

Reducing the Burden and Improving QoL in Non-Cystic Fibrosis Bronchiectasis:

New Insights into the Pathophysiology and Treatment

Recognizing the Burden of Bronchiectasis

Molly Mailes, MSN, RN, MEDSURG-BC

Disease Burden

US Prevalence

• 340,000 to 520,000

Demographics

- Caucasians
- Females
- Never smokers
- Mean age: 64 ± 14 years
- Prior NTM disease

Severity Associated with:

- Poor nutrition/low BMI
- P. aeruginosa infection

Characterized by:

- Dilated bronchi
- Poor mucus clearance
- Repeated bacterial infection
- Bronchial wall injury

Patient Burden

- Reduced QoL
- Significant financial burden
- Significant morbidity
- Increased mortality with low BMI
- Osteopenia/osteoporosis

Mortality Risk

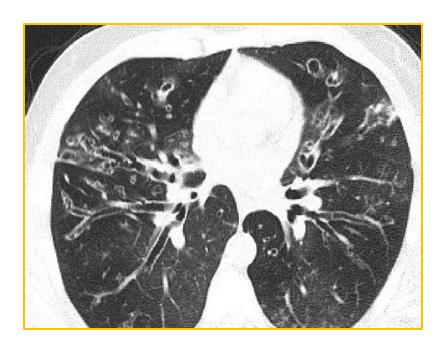
- 1.15 times greater mortality versus matched controls
- Mortality greatest in elderly patients and men
- Comorbidities increasing mortality:
 - Asthma
 - COPD
 - Pneumonia
 - Lung cancer
 - Cardiovascular disease

Diagnosing Bronchiectasis

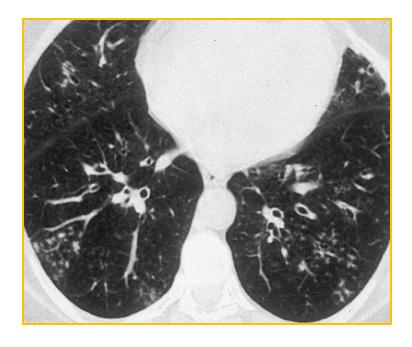
Margaret Johnson, MD

Recognizing Bronchiectasis

Clinical Suspicion


- Cough
- Excessive sputum production
- Recurrent respiratory infections
- Pleuritic chest pain
- Hemoptysis
- Breathlessness
- Lethargy
- Weight loss/low BMI
- P. aeruginosa or NTM in the respiratory tract

At-Risk Population


- Older age
- Female gender
- Co-existent lung disease
- Prior infections
- Autoimmune disease
- Immunodeficiency
- Chronic aspiration

CT Signs of Bronchiectasis

- Airway dilation
- Mucus plugging
- Lack of airway tapering
- Tree-in-bud opacities

Clinically Significant Bronchiectasis?

Bronchiectasis

- Airway diameter > blood vessel
- Lack of airway tapering
- Visibility of airway in periphery

(At least 2 of following)

- Cough most days of the week
- Sputum production most days of the week
- History of exacerbations

International Consensus Recommendations for Diagnosis

Diagnostic Testing for Bronchiectasis

Labs

- CBC with differential
- History directed lab work-up:
 - RF, anti-CCP, ANCA, A1AT, HIV-1 serology
- Respiratory Cultures
 - Bacteria
 - Fungus
 - AFB
- Antibody Testing
 - Serum total IgE
 - Aspergillus fumigatus IgE
 - Serum IgG, IgA, IgM
 - Baseline antibodies against capsular polysaccharides of S. pneumoniae
 - Vaccinate if low and reassess titer at 4 to 8 weeks

Additional Testing (Selected)

- Cystic fibrosis
- Primary ciliary dyskinesia
- Reflux and aspiration
- Bronchoscopy to rule out endobronchial lesion or foreign body

Idiopathic Cases

 About 40% of bronchiectasis cases are idiopathic

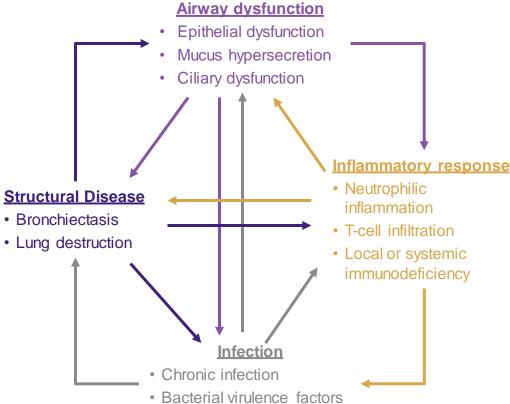
Bronchiectasis Pathophysiology and Emerging Therapies

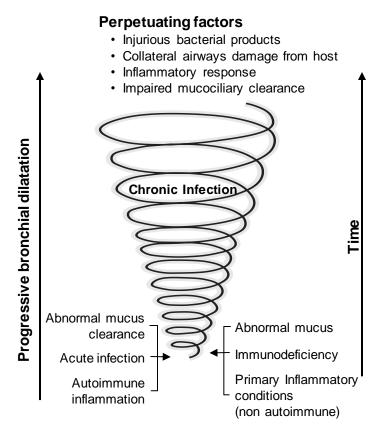
Mark Metersky, MD

Current Treatment Options

- Airway clearance devices and chest physical therapy
- Hypertonic saline
- Bronchodilators
- Anti-inflammatory treatment
 - Chronic low-dose macrolide therapy
 - Inhaled corticosteroids
- Antimicrobial therapy (oral, inhaled)
- Surgery and transplant (limited role)

Role of the Nurse or Respiratory Therapist


- Educate on airway clearance therapy
 - What it is
 - Why it is important and consequences of mucus accumulation
 - Proper use and cleaning of mucus-clearing devices
 - Integrating treatment into their daily regimen
- Discuss fears and misconceptions


Bronchiectasis: Pathogenesis

Neutrophil Inflammation (Proteases) Cole 1986 Bacterial Colonization Airway Destruction and Distortion (Bronchiectasis) Abnormal Mucus Clearance Struct Bronchiectasis

Vicious Vortex²

Alternative Vicious Vortex³

Initiating factors

- 1. McShane PJ, et al. *Am J Respir Crit Care Med.* 2013;188(6):647-656.
- 2. Flume PA, et al. Lancet. 2018;392(10150):880-890.
- 3. Metersky M, Barker AF. Clin Chest Med. 2022;43(1):35-46.

Role of Neutrophils

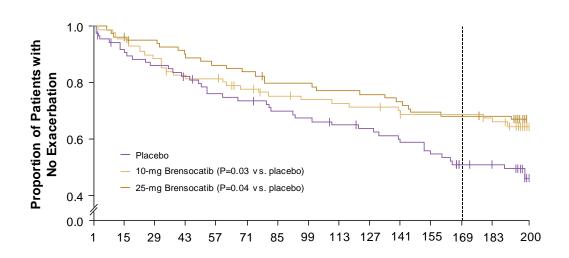
Sputum Neutrophils are Associated with:

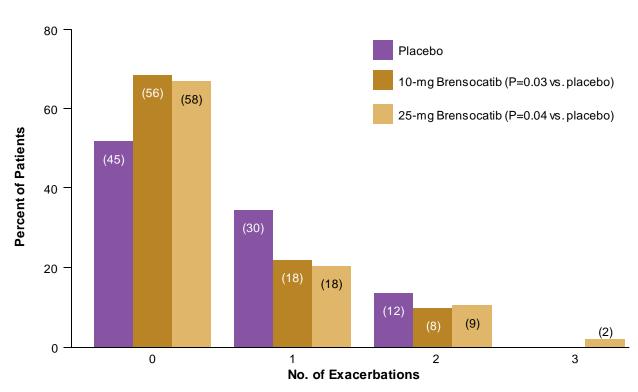
- Decline in pulmonary function
- Bacterial colonization
- Severe disease
- Inflammatory morbidity

Neutrophil Elastase is an NSP Associated with:

- Extracellular matrix degradation
- Mucus gland hyperplasia
- Increased mucus production
- Reduced ciliary beating rate
- Direct epithelial damage

Inhibiting DPP-1

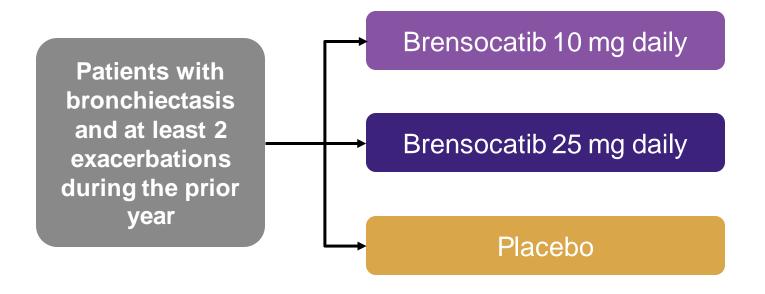

- DPP-1 activates neutrophil elastase in the bone marrow during neutrophil maturation
- Direct neutrophil elastase inhibition failed to improve NCFBE in Phase 2 studies
- DPP-1 is currently an investigational target



Brensocatib: Phase 2 WILLOW

Mechanism of Action

- Selective reversible DPP-1 inhibitor
- Oral small molecule
- Blocks NSP activation



Click here to view the clinicaltrials.gov study record for this study: https://tinyurl.com/4w4a8wa4

Brensocatib: Phase 3 ASPEN¹

- Primary outcome:
 Pulmonary exacerbations
- Secondary outcomes:
 - o QoL
 - o Lung function
 - Tolerability

Click here to view the clinicaltrials.gov study record for this study: https://tinyurl.com/yeyv45va

Eligible patients completing the ASPEN study were invited to participate in the expanded access trial? https://tinyurl.com/2d67tana

Role of Eosinophils

Inflammatory Response^{1,2}

Up to a **third** of patients with bronchiectasis have a predominant eosinophilic rather than neutrophilic inflammatory response

IL-5 Receptor (IL-5R)

Expressed on the surface of eosinophils

Is there a role for anti-IL5 or anti-eosinophilic therapy?

Anti-IL5 monoclonal antibodies directly bind the alpha subunit of the IL-5R leading to apoptosis of eosinophils

^{1.} Rademacher J, et al. Eur Respir J. 2020;55(1):1901333.

^{2.} Guan WJ, et al. J Allergy Clin Immunol Pract. 2022;S2213-2198(22)01129-1.

^{3.} ClinicalTrials.gov. NCT05006573. For study record, click here: https://tinyurl.com/yae7dbv6.

Other Agents in Development

Phase 1

- Neutrophil elastase inhibitor BI 1323495¹
- Neutrophil elastase inhibitor CHF 6333² (Inhaled)
- Nebulized human plasma-derived polyvalent immunoglobulin G (lgG): CSL787³

Phase 2

- DPP-1 inhibitor HSK31858⁴
- Ascorbic acid/glutathione/bicarbonate inhalation⁵

For these and other ongoing clinical trials for NCFBE, please see: https://tinyurl.com/ye9f3w43

- 1. ClinicalTrials.gov. NCT04656275.
- 2. ClinicalTrials.gov. NCT04010799.
- 3. ClinicalTrials.gov. NCT04643587.
- 4. ClinicalTrials.gov. NCT05601778.
- 5. ClinicalTrials.gov. NCT05495243.

Thank You

To download the **program slides**, use the button in the top right corner.

Please use the "Continue Activity" button below to complete the post-test and evaluation to claim credit.

