

Incorporating New Therapies to Hone the Treatment of Resistant or Refractory CMV in the Post-SOT Setting

Provided by RMEI Medical Education, LLC

MEDICAL EDUCATION

Supported by an educational grant from Takeda Pharmaceuticals U.S.A., Inc.

Camille Nelson Kotton, MD, FIDSA, FAST

Camille Nelson Kotton, MD, FIDSA, FAST, has relevant financial relationships with Abbott Laboratories, Biotest, Evrys, Exevir, Hookipa, Merck, Oxford Immunotec, QIAGEN, Roche Diagnostics, Takeda (*Consultant*).

Marcus R. Pereira, MD, MPH, FAST

Marcus R. Pereira, MD, MPH, FAST, has relevant financial relationships with Takeda (Consultant).

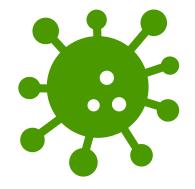
Raymund R. Razonable, MD, FIDSA, FAST

Raymund R. Razonable, MD, FIDSA, FAST, has relevant financial relationships with Gilead, Regeneron, Roche (*Grant/Research Support*); Merck (*Other: Data Adjudication Committee*).

All relevant financial relationships listed for these individuals have been mitigated according to RMEI policies.

Evidence-Based Management of CMV in the Post-SOT Setting

Camille Nelson Kotton, MD, FIDSA, FAST Clinical Director, Transplant and Immunocompromised Host Infectious Diseases Infectious Diseases Division Massachusetts General Hospital Associate Professor, Medicine Harvard Medical School Boston, MA


CMV: What is it and Why is it Important?

Cytomegalovirus (CMV)

Consequences in SOT Patients

- Frequently observed opportunistic pathogen in transplant recipients
- Establishes life-long latency after initial infection
- Most transplant patients get prophylactic or preemptive therapy to prevent CMV disease

- Higher risk for complications
- Tissue invasive disease
- Opportunistic co-infections (viral, fungal)
- Higher risk of post-transplant lymphoma
- Higher risk of graft rejection
- Increased mortality

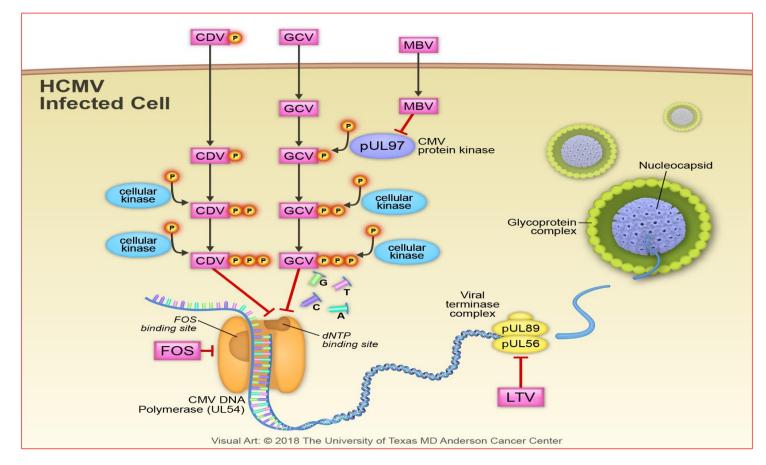
Currently Available CMV Antivirals

Antiviral	Route of Administration	Route of Excretion	Use for CMV in Transplant Patients
Ganciclovir	Intravenous	Renal	Treatment* and prevention
Valganciclovir	Oral	Renal	Treatment* and prevention
Foscarnet	Intravenous	Renal	Treatment*
Cidofovir	Intravenous	Renal	Treatment*
Maribavir	Oral	Hepatic	Treatment of post-transplant refractory/resistant CMV infection/ disease
Letermovir	Oral, intravenous	Hepatic	Prophylaxis in CMV seropositive HCT recipients

*Not FDA approved for the treatment of CMV infection or disease in transplant patients HCT, hematopoietic cell transplant

Virus Antiviral Prophylaxis and Treatment Agents

Antiviral Agent	CMV	HHV-6	EBV	HHV-8	HSV	Varicella	BK	Adeno- virus
Commercially Available								
Acyclovir/valacyclovir/famciclovir*	High dose \pm				Х	X		
Ganciclovir IV/valganciclovir PO	x	x		±	х	X		
Foscarnet**	x	х		±	Х	X		
Cidofovir**	x	x		H	х	x	Poor	± IC50
Letermovir (prophylaxis only)	X							
Maribavir (resistant/ refractory CMV treatment only)	X		In vitro					
Novel/Investigational Antiviral Agents (SOT)								
Brincidofovir (not available)	x		x		x	x	X	x
Pritelivir (Phase III)					x			


*Acyclovir/valacyclovir/famciclovir and letermovir for prophylaxis only

**Foscarnet, cidofovir, maribavir not usually used for prophylaxis

Adapted from: Kotton CN. Curr Opin Organ Transplant. 2019;24(4):469-475.

Mechanism of Action of Antivirals

CDV, cidofovir; FOS, foscarnet; GCV, ganciclovir; LTV, letermovir; MBV, maribavir

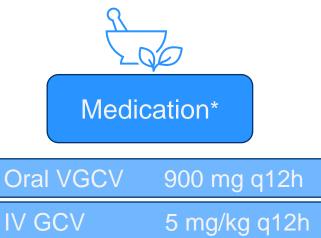
Foolad F, et al. *Expert Rev Clin Pharmacol.* 2018;11(10):931-941.

CMV Prevention Strategies in SOT

	Universal Prophylaxis	Preemptive Therapy
Description	Antivirals for all patients at risk prior to the onset of CMV infection	 Routine monitoring for CMV infection Treatment upon detection of asymptomatic CMV infection
Early CMV DNAemia/infection	Rare	Common
Late CMV	Common	Rare
Prevention of CMV disease	Yes	Yes
Ease of implementation	Easy	Difficult to coordinate No universal threshold to trigger therapy
Cost	Cost of drug, hospitalization, and disease cost of late CMV	Cost of monitoring
Toxicity	More drug toxicity (myelosuppression)	Less drug toxicity

Kotton CN, et al. *Transplantation*. 2018;102(6):900-931. Razonable RR, Humar A. *Clin Transplant*. 2019;33(9):e13512.

CMV Prevention: Guideline Recommendations


Organ	CMV serostatus D+/R-	CMV serostatus R+
Kidney	VGCV, IV GCV, valacyclovir x 6 months <i>OR</i> pre-emptive	VGCV (preferred), GCV, valacyclovir x 3 months <i>OR</i> pre-emptive
Pancreas, kidney/pancreas	VGCV, IV GCV x 3 to 6 months OR pre-emptive	VGCV, IV GCV x 3 months OR pre-emptive
Liver	VGCV, IV GCV x 3 to 6 months OR pre-emptive	VGCV, IV GCV x 3 months OR pre-emptive
Intestine	VGCV, IV GCV x 6 months ± surveillance after	VGCV, IV GCV x 3 months ± surveillance after
Heart	VGCV, IV GCV x 3 to 6 months OR pre-emptive	VGCV, IV GCV x 3 months OR pre-emptive
Lung	VGCV, IV GCV x at least 6 to 12 months Some centers extend beyond 12 months	VGCV, IV GCV x 6 to 12 months

D, donor; R, recipient; VGCV, valganciclovir; GCV, ganciclovir; VGCV preferred over GCV

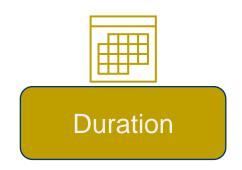
Kotton CN, et al. *Transplantation*. 2018;102(6):900-931. Razonable RR, Humar A. *Clin Transplant*. 2019;33(9):e13512.

Treatment of CMV in SOT Patients

Consider IV GCV in:

- Life-threatening disease
- Very high viral load
- Patients with questionable GI absorption

Not Recommended for Treatment of CMV Infection/Disease


Acyclovir, valacyclovir, letermovir

*Adjust dose for renal function

VGCV, valganciclovir; GCV, ganciclovir; SOT, solid organ transplant; LLOQ, lower limit of quantification

Weekly Monitoring

- 1. CMV PCR
- 2. Serum creatinine
- 3. Complete blood count
- Frequent monitoring of renal function is recommended to guide dose adjustments

- Until resolution of clinical symptoms
- Virological clearance is below a predefined threshold (LLOQ <200 IU/mL) or undetectable on 1 or 2 weekly samples
- Minimum of 2 weeks of therapy

Kotton CN, et al. Transplantation. 2018;120(6):900-931.

Side Effects and Toxicities

Antiviral Agent	Bone Marrow	Kidney	Altered Taste	Nausea
Ganciclovir IV/valganciclovir PO	\checkmark			
Acyclovir at high doses (CMV prophylaxis only)		\checkmark		
Foscarnet		\checkmark		
Cidofovir		\checkmark		
Letermovir (HCT approved, CMV prophylaxis only)				\checkmark
Maribavir (SOT and HCT approved, refractory/resistant CMV treatment)			\checkmark	

HCT, hematopoietic cell transplant; SOT, solid organ transplant

Managing CMV Antiviral Side Effects

Leukopenia

- Reduce or stop MMF and/or stop valganciclovir
- For (val)ganciclovir, <u>do not dose</u> reduce for low WBC, always dose to GFR
 - Increases risk of resistance (especially with infection)
 - Support WBC with growth factors (G-CSF), or
 - If prevention: Switch to preemptive monitoring with weekly blood checks (± HSV/VZV prophylaxis)
 - If treatment: Switch to foscarnet

MMF, mycophenolate mofetil; WBC, white blood cell; GFR, glomerular filtration rate; G-CSF, granulocyte colony stimulating factor; HSV, herpes simplex virus; VZV, varicella-zoster virus; VGCV, valganciclovir; MPA, mycophenolic acid; IV, intravenous

Neutropenia

- Reduce/discontinue VGCV
- Reduce/discontinue MPA
- Discontinue cotrimoxazole
- Use of G-CSF

Nephrotoxicity

- Adequate IV hydration
- Avoidance of concomitant nephrotoxic drugs
- Dose adjustment for GFR
- Treatment interruption may be required

Kotton CN, et al. Transplantation. 2018;120(6):900-931.

Challenges of CMV Treatment in SOT Patients

Current CMV treatment options remain limited by:

- Significant toxicities: Renal, bone marrow, ocular
- Need to dose medications as per renal function, which can be hard to accurately assess
- Cost and complexity
 - Close laboratory monitoring
 - For some: Intravenous requirement, need for hospitalization
- Potential for development of CMV resistant/refractory disease with prolonged use

Detecting Resistant or Refractory CMV: Key Tactics and Considerations

Marcus R. Pereira, MD, MPH, FAST

Associate Professor, Medicine Medical Director, Transplant Infectious Diseases Program Columbia University Irving Medical Center New York-Presbyterian Hospital New York, NY

Refractory and Resistant CMV

Refractory CMV Infection

Refractory CMV End-Organ Disease

Antiviral Drug Resistance

Viral genetic alteration that decreases susceptibility to one or more antiviral drugs

CMV viremia that increases after at least 2 weeks of appropriately dosed antiviral therapy Worsening in signs and symptoms or progression into end-organ disease after at least 2 weeks of appropriately dosed antiviral therapy

Incidence of Antiviral Drug Resistance in SOT Patients

Incidence of Resistance

 0% to 3% after 100 to 200 days of GCV or VGCV prophylaxis in D+/R- kidney recipients

Incidence Higher After GCV Therapy

- 5% to 12% among all SOT recipients
- Up to 18% among lung recipients
- Up to 31% among intestinal/multivisceral recipients

Associated with Poor Outcomes

- Higher rates of hospitalization, increased length of stay, higher costs
- Increased adverse events from alternative therapies
- Increased rejection and allograft loss
- Increased mortality

Severity

 Ranges from asymptomatic infection to severe/fatal tissue invasive disease


GCV, ganciclovir; VGCV, valganciclovir; D, donor; R, recipient; SOT, solid organ transplant

Understanding Refractory Disease

Development of Refractory Disease

- Can develop to all available therapies
- Usually occurs after prolonged anti-viral treatment + higher immunosuppression
- Not all patients with refractory CMV have drug-resistant virus documented by genotypic testing

Risk Factors for CMV Resistance

suppression)

Prolonged DNAemia (>21 days)

while on antiviral therapy

• Lung transplant recipients

D, donor; R, recipient; GCV, ganciclovir

Kotton CN, et al. *Transplantation*. 2018;102(6):900-931. Boivin G, et al. *J Clin Virol*. 2012;53(3):208-213.

When to Suspect Antiviral Resistance

Antiviral resistance may be present if:

- Rising viral load (VL) on antivirals after initial viral suppression
- Failure of VL to decrease by at least
 1 log₁₀ after antiviral induction therapy

Resistance most common when:

- Prolonged exposure to antivirals (>6 weeks)
- Persistent viremia
- Antiviral dosage adjusted due to toxicity or reduced creatinine clearance

Immunosuppressive therapy should be decreased, if feasible

Monitoring for Resistance

When to Test

- Antiviral drug resistance should be suspected and tested for when there is persistent or recurrent CMV DNAemia or disease during prolonged antiviral therapy
- For GCV, at least 6 or more weeks
 - Including longer than 2 weeks of ongoing full and appropriately dosed therapy

How to Test

- Genotypic assays for viral drug resistance mutations in UL97 and UL54 genes
 - 7 most common ("canonical")
 UL97 mutations 80% cases
 - Several UL54 mutations

Testing for Resistance

Genotypic Assays

- Performed on viral sequences amplified from blood (whole blood, plasma, or leukocytes), fluids (urine, cerebrospinal, lung, eye) or tissue specimens
- Results are more reliable if the CMV copy number in the specimen is at least 1000 IU/mL.
- Quality control concerns:
 - False positives due to mixed populations from low viral-load specimens
 - False negatives due to insensitivity in detecting mutant subpopulations comprising less than 20% to 30% of the total

Genotypic assays to detect UL97 mutation should be performed among patients suspected to have resistance to ganciclovir Genotypic assays to detect UL54 mutations should be performed among patients suspected to have resistance to ganciclovir, foscarnet, and cidofovir

Mutations Associated With Resistance

Genotypic resistance testing detects mutations in UL97, UL56, and UL54 genes

UL97

 Mutations common conferring resistance to ganciclovir

UL97: Specific mutations (T409M, H411Y)

• Confer resistance to maribavir

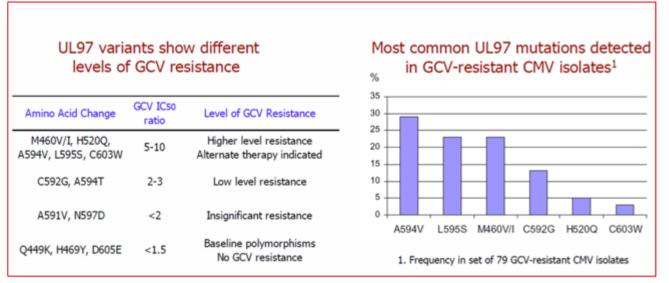
UL54

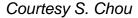
• Mutations may confer resistance to foscarnet, ganciclovir, or cidofovir

UL56

• Mutations may confer resistance to letermovir only. No cross resistance with ganciclovir, foscarnet, or cidofovir

GCV Resistance Levels


GCV resistance levels are determined by the fold change in EC50 (drug concentration that reduces viral growth by 50%)

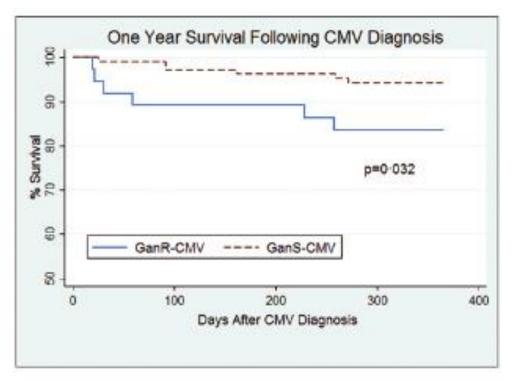

Low Grade	Moderate Grade	High Grade
2-fold to 5-fold	 5-fold to 15-fold A level that may result from a single UL97 mutation 	 Greater than 15-fold Suggests the combined effect of UL97 and UL54 mutations

How Do You Confirm Resistant CMV

- Genotypic resistance testing involves sequencing of relevant portions of the CMV genome and is the preferred method
- Phenotypic resistance testing involves culturing the virus in the presence of different drug concentrations and is more labor intensive

Interpreting Resistance Test Results

	Value	Range
Ganciclovir UL54 Gene Target	None Detected	None Detected
Ganciclovir UL97 Gene Target	Resistant at Site A594V (A)	None Detected
Foscarnet UL54 Gene Target	None Detected	None Detected
Cidofovir UL54 Gene Target	None Detected	None Detected
site is indicated. A result o no mutations were detected for	IC50 value must be indicated to A complete list of mutations	None Detected
This test was developed and it determined by approved by the U.S. Food and should be used in conjunction should not form the sole basis decision. Mutations may devel have not yet been reported in	. It has not been cleared or Drug Administration. Results with clinical findings, and for a diagnosis or treatment op and confer resistance that	


Outcomes of Ganciclovir Resistance

Patient Outcomes

Outcome	Cases (n = 37)	Controls (n = 109)	PValue
Morbidity measures			
Days to clearance of viremia, median (IQR)	113 (50–394)	53 (32–149)	.006
≥20% decrease in eGFR by 3 mo after CMV diagnosis	15 (41.7)	21 (19.4)	.008
Well days [*] in the 3 mo after CMV diagnosis, mean (SE)	72.7 (4.8)	81.0 (1.7)	.039
Rejection within 1 y following CMV dia	agnosis		
All organs	15 (40.5)	38 (34.9)	.54
Kidney	4 (66.7)	2 (10.5)	.005
Mortality			
3 mo	4 (10.8)	1 (0.92)	.004 ^b
12 mo	6 (16.2)	6 (5.5)	.032

Kaplan-Meier Survival Curve

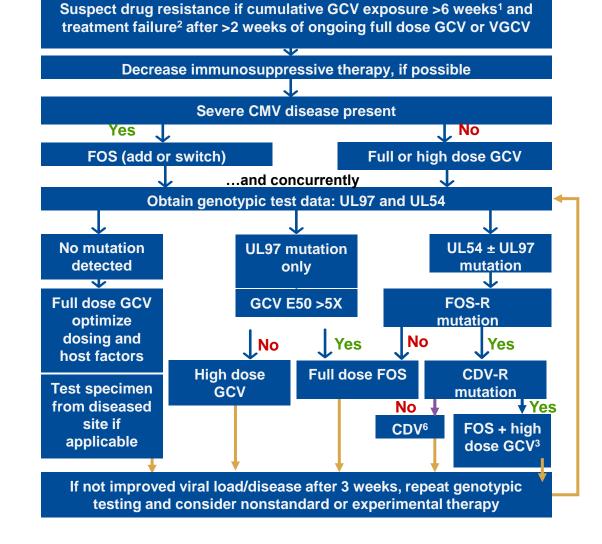
Comparison of outcomes in patients with GCV resistance versus GCV sensitivity

Fisher C, et al. Clin Infect Dis. 2017;65(1):57-63.

Managing Drug-Resistant or Treatment-Refractory CMV in the Post-SOT Population

Raymund R. Razonable, MD, FIDSA, FAST

Professor, Medicine Program Director, Infectious Diseases Fellowship Program Vice Chair, Division of Infectious Diseases Mayo Clinic Rochester, MN


Resistant CMV Management Guidelines

- Current algorithms are based on expert opinion due to limited data
- Maribavir is the only FDA approved treatment for post-transplant CMV infection/disease that is refractory to treatment (with or without genotypic resistance) with GCV, VGCV, CDV, or FOS

GCV, ganciclovir; FOS, foscarnet; CDV, cidofovir; VGCV, valganciclovir

- 1. Resistance rare before 6 weeks
- 2. Symptomatic disease or viral load not improving
- 3. Case reports of GCV EC50 5x-10x successfully treated with high-dose GCV Kotton CN, et al. *Transplantation*. 2018;102(6):900-931.

Treatment of Drug-Resistant/ Refractory CMV

- First step is to reduce immunosuppressive therapy to the lowest feasible amount
- Therapies
 - o Maribavir
 - High-dose ganciclovir
 - Foscarnet
 - Cidofovir
- Adjunctive therapies
- Investigational therapies
- Off-label therapies

High-dose Ganciclovir

Appropriate Candidates

- Best for those with:
- Low-level resistance UL97 gene mutations (C592G)
- Low-level DNAemia
- Asymptomatic or mildly symptomatic disease

Regimen

1	i	

Dose escalation from 7.5 to 10 mg/kg every 12 hours in normal renal function

SOT, solid organ transplant

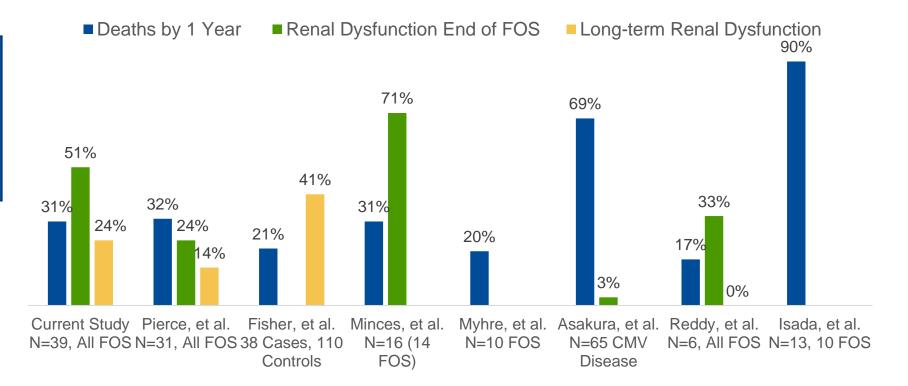
Adverse Events

Neutropenia reported in approximately 50% of patients

Limitations

Data in SOT limited to few case series:

- Successful outcomes in 6 patients with low-level DNAemia
- 21% clearance rate in 14 patients with genotypic resistance and high-level DNAemia
- Narrow applicability



Studies Published After the Year 2000, Reporting Outcomes of 6 or More Transplant Recipients Treated with Foscarnet for Established CMV Infection

Overall

- Virologic clearance: 66%
- CMV relapse: 31%
- Renal dysfunction: 51%
- 1 year mortality: 31%

Limitations: Metabolic and renal toxicity

Cidofovir

Summary statistics of transplant recipients treated with CDV for resistant/refractory CMV

	BMT/Oncology (M	N = 6)	SOT (N = 10)	
Male	2 (33.3%)		5 (50%)	
Female	4 (66.7%)		5 (50%)	
Median age at transplant (y)	23 (IQR 20.8-31)		60 (IQR 43.3-60	.5)
Type of Transplant	DC MA HI NMA HI	1 (16.7%) 1 (16.7%) 4 (66.7%)	Kidney Heart Lung Liver	6 (60%) 2 (20%) 1 (10%) 1 (10%)
Donor and recipient CMV IgG serostatus	D+/R- D-/R+ D+/R+ D-/R- D?/R?	2 (33.3%) 1 (16.7%) 1 (16.7%) 1 (16.7%) 1 (16.7%)	D+/R- D-/R+ D+/R+ D-/R- D?/R?	6 (60%) 0 3 (30%) 0 1 (10%)
Median time to CMV DNAemia from transplant (d)	37 (IQR 30.8-133	3)	168 (IQR 112.2-	253.5)
Median peak CMV viral load, IU/mL ^a	116 850 (IQR 16,1	43.8-2 582 500)	72 959 (IQR 869	4.3-759 750)
Tissue-invasive CMV disease ^b	3 (50%)		4 (40%)	

Steinke SAM, et al. *Transpl Infect Dis.* 2021;23(3):e13521.

Cidofovir

Treatment outcomes for transplant recipients treated with CDV for resistant/refractory CMV

	BMT/Oncology (N = 6)	SOT (N = 10)	Total (N = 16)
Treated with GCV/VGCV before CDV	6 (100%)	10 (100%)	16 (100%)
Treated with FOS before CDV	5 (83.3%)	4 (40%)	9 (56.3%)
Median time to CDV after first CMV+ (d)	90 (IQR 43-230.75)	112 (IQR 21-154)	112 (IQR 38-152)
Median duration CDV received (d)	30 (IQR 15.25-68.25)	16 (IQR 8-35.5)	21.5 (IQR 8.3-47.3)
Median number of CDV doses received	3 (IQR 2-10)	2 (IQR 1-4)	3 (IQR 1-4)
CDV dosing schedule weekly \times 2 doses then every 2 wk ^a	1	3	4
CDV dosing schedule weekly ^a	5	7	12
CMV Immune globulin received	5 (83.3%)	3 (30%)	8 (50%)
GCV/VGCV given after CDV therapy	2 (33.3%)	3 (30%)	5 (31.3%)
Uveitis	1 (16.7%)	3 (30%)	4 (25%)
Nephrotoxicity ^b	3 (50%)	3 (30%)	6 (37.5%)
Recovery of renal function ^c	0	1 (10%)	1 (6.3%)
Failure to clear CMV DNAemia ^d	4 (66.7%)	4 (40%)	8 (50%)
Death ^e	4 (66.7%)	4 (40%)	8 (50%)
Median time to death (days) for patients who died (4 BMT, 4 SOT)	667.5 (range, 13-2606)	28.5 (range 21-53)	33.5 (IQR 22-988)

Limitations: Nephrotoxicity

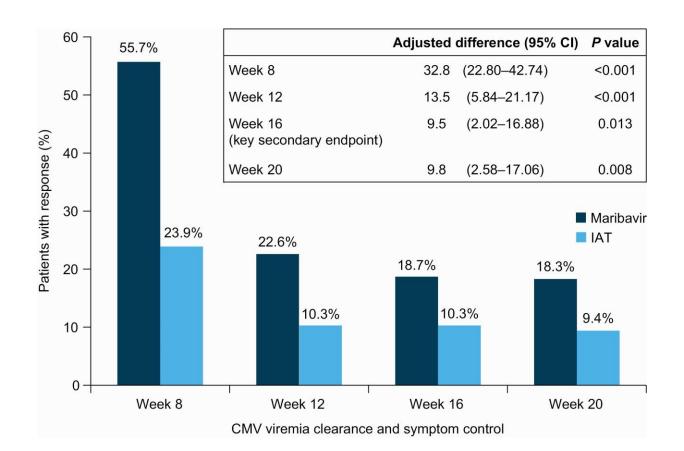
Steinke SAM, et al. *Transpl Infect Dis.* 2021;23(3):e13521.

Maribavir Phase 3 SOLSTICE Trial: Study Design

Wk 16 Wk 8 Study treatment period Maribavir 400 mg orally BID **Key Study Inclusion Criteria** for 8 weeks (n=235) R 12-week SOT/HCT recipients 2:1 Investigator-assigned therapy (IAT) follow-up CMV infection (plasma CMV DNA for 8 weeks (val/ganciclovir, foscarnet, or cidofovir) ≥910 IU/mL) (n=117) Wk 8 rescue Refractory to most recent therapy Rescue treatment period Rescue arm with maribavir (failure to achieve >1 log_{10} decrease (400 mg orally BID) 12-week in CMV DNA after 14 days) for 8 weeks follow-up After minimum 3 weeks therapy with IAT (n=22) **End Points Other Secondary** Primary **Key Secondary** Confirmed CMV viremia clearance (plasma Composite of CMV viremia clearance and CMV DNA <LLOQ in 2 consecutive tests

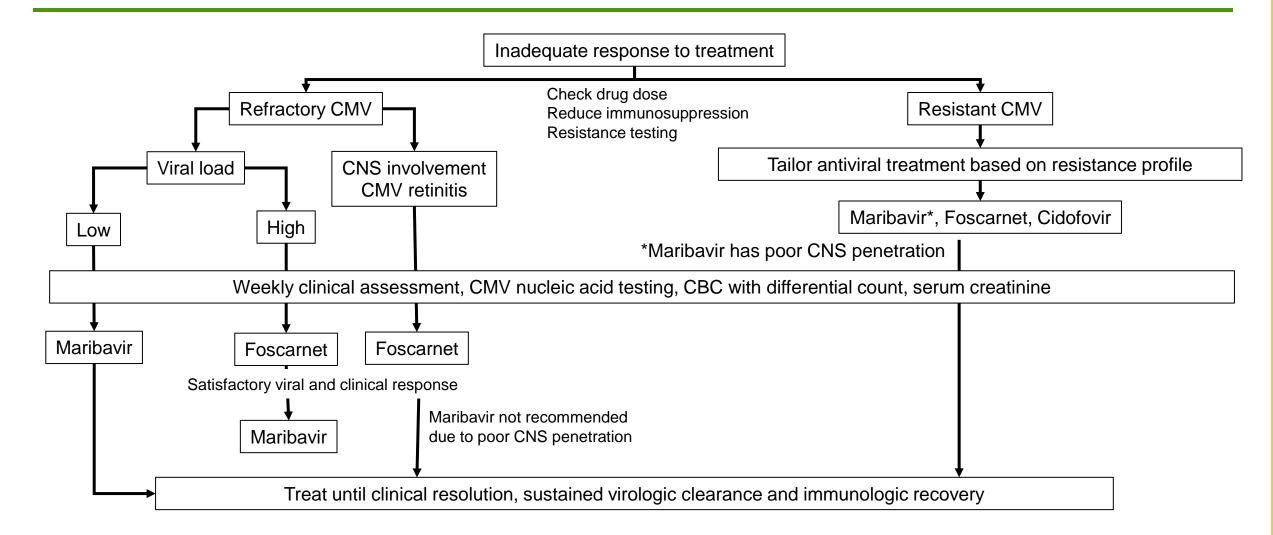
 \geq 5 days apart at central laboratory) at end of Week 8

symptom control at end of Week 8 and maintained through Week 16


Assess the efficacy (including symptom control) and safety of maribavir as rescue treatment

SOT, solid organ transplant; HCT, hematopoietic cell transplant; BID, twice daily; LLOQ, lower limit of quantification

Maribavir Phase 3 SOLSTICE Trial: Primary and Secondary Endpoint Results



Confirmed Viremia Clearance and Symptom Control

Algorithm for the Management of Refractory or Resistant CMV in SOT

Razonable RR. Clin Microbiol Infect. Published online March 23, 2023. Available at: https://doi.org/10.1016/j.cmi.2023.03.020.

Adjunctive, Investigational, and Off-label Therapies

CMV-Ig or IVIG

Adjunctive use in severe disease

Supply and cost limitations

Adoptive T-cell Therapy

- High rates of response
- Low toxicity
- Logistical and cost limitations
- Phase 1 studies in SOT recipients ongoing (NCT03950414, NCT03665675)

• mTOR Inhibitors as Part of Immunosuppressive Regimen

- Reduces risk of CMV infection
- o Tolerability an issue

Leflunomide and Artesunate

- Mixed outcomes in very limited data
- Caution advised

Haidar G, et al. *J Infect Dis.* 2020;221(Suppl 1):S23-S31. Kotton CN, et al. *Transplantation.* 2018;102(6):900-931.