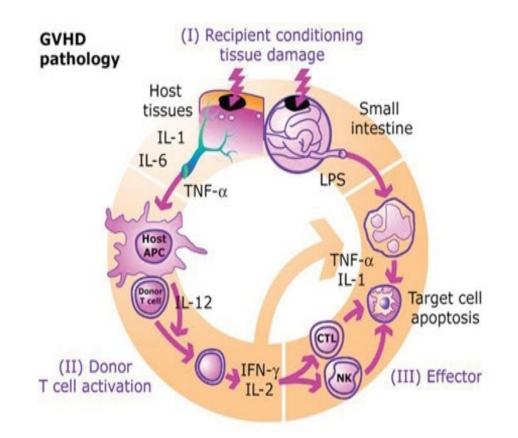


A Violent Graft in a Vulnerable Host: THE FUTURE OF aGvHD MANAGEMENT

Supported by an independent educational grant from CSL Behring LLC.

Current and Emerging Therapies for aGvHD in the Post-HSCT Setting: Prevention and Initial Therapy

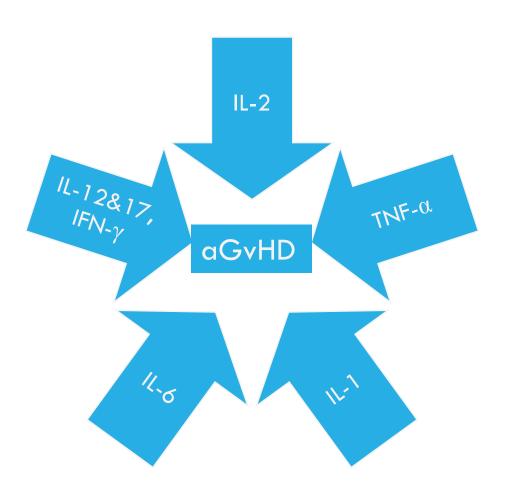
Chelsea C. Honstain, MS, FNP-C


Nurse Practitioner C.S. Mott Children's Hospital University of Michigan Ann Arbor, MI

Foundations of Acute GvHD

Pathophysiology of Acute GvHD

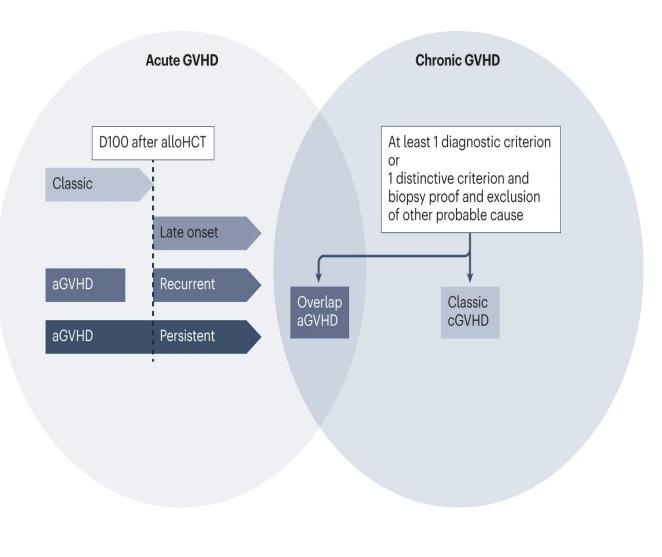
- Recognition and destruction of recipient tissues and organs by the donor immune effector cells
- Three Phases:
 - Phase 1 (Afferent): Damage to recipient tissue secondary to conditioning regimen; loss of microbiome
 - Phase 2 (Efferent): Donor T cells interact with recipient's APCs leading to proliferation and differentiation into activate T cells
 - Phase 3 (Effector): Cytotoxic T lymphocytes and natural killer cells target organs causing tissue damage



Malard F, et al. Nat Rev Dis Primers. 2023;9(1):27.

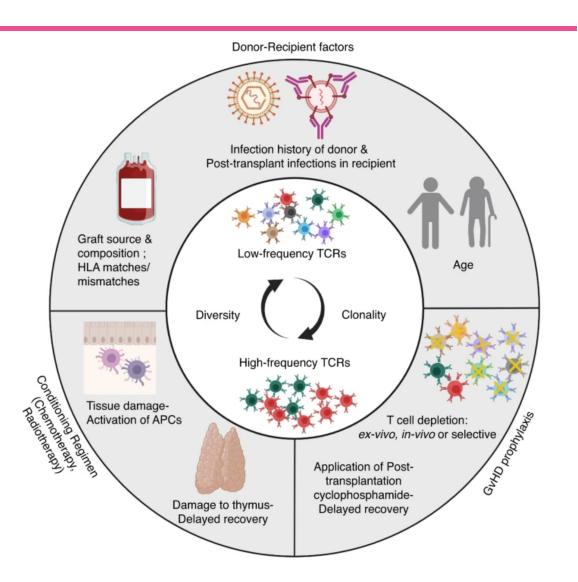
Implicated Cytokines

- Interleukin-2 (IL-2) activation and proliferation of T cells
- Tumor necrosis factor-alpha (TNF-α) promotes inflammation and tissue damage in GvHD
- Interleukin-1 (IL-1) contributes to tissue damage and inflammation
- Interleukin-6 (IL-6) proinflammatory cytokine involved in the pathogenesis of GvHD
- Others:
 - IL-12 stimulates the differentiation of naïve T cells that are involved in cell-mediated immune responses associated with GvHD
 - IL-17 promotes inflammation and tissue damage; particularly in the gut
 - Interferon-gamma (IFN-γ) involved in the inflammatory response and tissue damage characteristic of GvHD

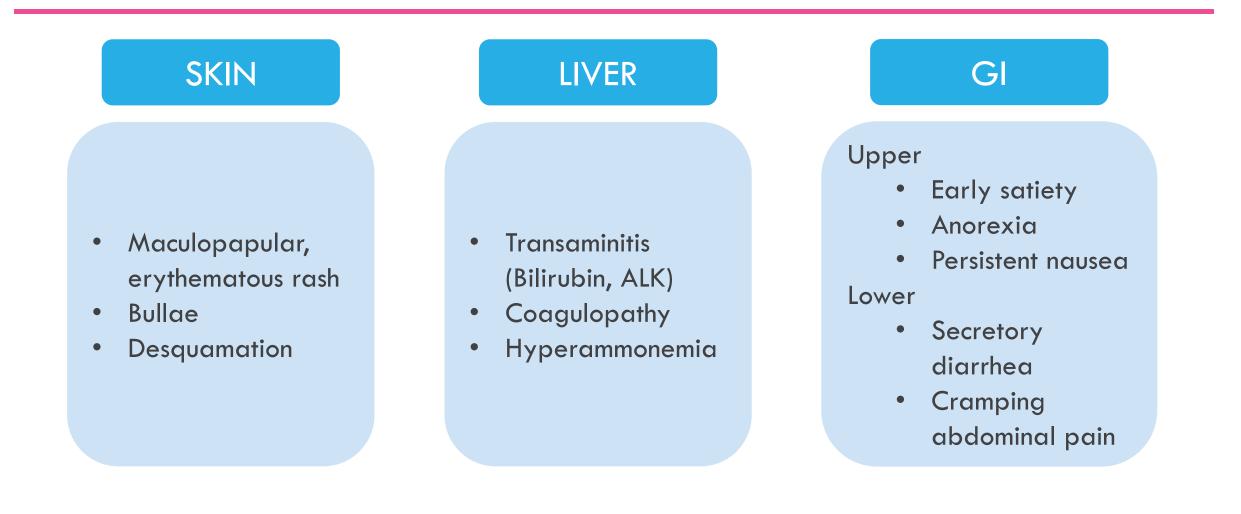


Malard F, et al. *Nat Rev Dis Primers.* 2023;9(1):27. Zeiser R, et al. *N Engl J Med.* 2017;377(22):2167-2179.

Epidemiology


- aGvHD incidence remains high (30% to 62%)
 - Significant cause of NRM in adults/peds
 - Variance among HLA mismatch, patient ethnicity
- 1-year OS of 70% in patients with grade II acute GvHD and 40% in patients with grade III–IV acute GvHD

Risk Factors for Acute GvHD


- HLA mismatch
 - Increasing risk with greater HLA disparity
- Donor factors
 - Older donor age
 - Gender mismatching
- Recipient factors
 - Older age
- Transplant related factors
 - Intensity of conditioning regimen
 - Stem cell source
- Ineffective prophylaxis

Clinical Presentation of Acute GvHD

aGvHD Organ Staging

Stage	Skin	Liver	Gastrointestinal (Upper)	Gastrointestinal (Lower)
0	No active GvHD Rash	<2 mg/dL	No or intermittent nausea, vomiting or anorexia	Child: <10 mL/kg/day or <4 ep/day Adult: <500 mL/day or <3 ep/day
1	Maculopapular Rash <25% BSA	2 to 3 mg/dL	Persistent nausea, vomiting or anorexia	Child: 10 to 19.9 mL/kg/day or 4 to 6 ep/day Adult: 500 to 999 mL/day or 3 to 4 ep/day
2	Maculopapular Rash <50% BSA	3.1 to 6.0 mg/dL	-	Child: 20 to 30 mL/kg/day or 7 to 10 ep/day Adult: 1000 to 1500 mL/day or 5 to 7 ep/day
3	Maculopapular Rash >50% BSA	6.1 to 15 mg/dL	-	Child: >30 mL/kg/day or >10 ep/day Adult: >1500 mL/day or >7 ep/day
4	Generalized erythroderma (>50% BSA) <u>plus</u> bullous formation and desquamation >5% BSA	>15 mg/dL	_	Severe abdominal pain with or without ileus or grossly blood stool (regardless of volume)

Overall aGvHD Grading

Grade	MAGIC
Grade I	Stage 1-2 skin; no liver or GI involvement
Grade II	Stage 3 skin or Stage 1 liver or Stage 1 GI
Grade III	Stage 0-3 skin with Stage 2-3 liver or Stage 2-3 GI
Grade IV	Stage 4 skin, liver, or GI involvement

Harris AC, et al. *Biol Blood Marrow Transplant*. 2016;22(1):4-10.

GvHD Prophylaxis

Acute GvHD Prophylaxis

Institution Dependent

Regimens

- Calcineurin inhibitors
- Methotrexate
- Mycophenolate mofetil
- Sirolimus
- Post-transplant cyclophosphamide
- T cell Depletion (ex vivo or in vivo)
 - Rabbit anti-thymocyte globulin

Donor Selection

Martinez-Cibrian N, et al. *Blood Rev.* 2021;48:100792.

Current Studies

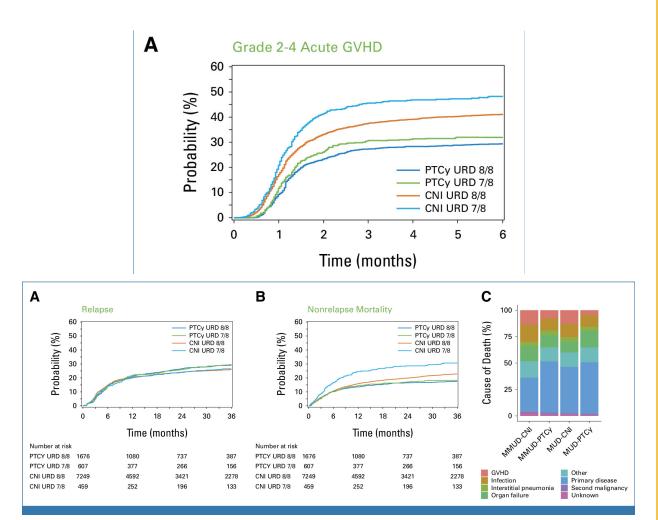
Abatacept

- Abatacept 2 (ABA2) trial
 - Multicenter Phase 2 trial
 - Abatacept plus CNI/MTX for GvHD prevention in 8/8 HLA MUD and 7/8 MMUD HCT
 - MMUD cohort demonstrated a significant reduction in grade 3 to 4 aGvHD
 - Significant improvements in TRM and overall survival (OS) at 2 years for patients receiving abatacept
- Multicenter retrospective analysis
 - 26 pediatric patients, 24 adult patients
 - 7/8 MMUD HCT with BM or PBSC for hematologic malignancy
 - Abatacept (Day -1, +5, +14, +28) plus CNI/MTX
 - Results supportive of ABA2
 - Low incidences of grade 3 to 4 aGvHD and TRM and encouraging DFS
 - Results assessed by age group unlike ABA2

CNI, calcineurin inhibitor; MTX, methotrexate; MUD, matched unrelated donor; MMUD, mismatched unrelated donor

Watkins B, et al. *J Clin Oncol.* 2021;39(17):1865-1877. Raghunandan S, et al. *Blood Adv.* 2023;7(16):4395-4399.

Post-Transplant Cyclophosphamide



- Retrospective single-institution cohort
- N=196 (peds & adults)
- PTCy on Day +3 & +4 plus tacrolimus & MMF
- Myeloablative & RIC conditioning
- BM & PBSC grafts (MRD & MUD)
- 28% developed aGvHD
- 16% developed Grade II-III requiring systemic steroids; 0 Grade IV
- Incidence of SR aGvHD 4.6%

Post-Transplant Cyclophosphamide

- Retrospective study CIBMTR database
- 10,025 adult patients from 153 centers with leukemia & MDS
- MUD (8/8) versus MMUD
- CNI with MTX or MMF with or without ATG & PTCy regimens included a CNI or sirolimus with or without MMF and ATG
- Improved OS for MUD with PTCy compared to MUD HCT with CNI (P=.004)
- GRFS improved with PTCy after MUD (P<.0001) & MMUD (P<.0001)
- Increased donor access

Vorinostat

- Histone deacetylase inhibitor (HDACi)
 - Downregulates expression of pro-inflammatory cytokines
 - Reduces activation of donor T Cells
- Vorinostat + Standard prophylaxis
- Phase I/II trial
 - Reduction in grade II-IV aGvHD
 - Well tolerated
 - Cytopenias, electrolyte imbalance, GI symptoms

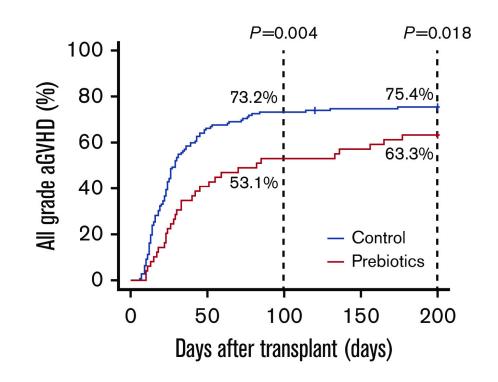
The Microbiome

- Mucosal damage & alteration of the gut microbiota contribute to aGvHD
- GI GvHD severity associated with:
 - Shift toward enterococcus in the gut
 - Reduction in specific microbial metabolites, such as butyrate
- Studies looking at:
 - Fecal microbiome transplant (treatment)
 - Pro & prebiotics (prophylaxis and treatment)

Resistant Potato Starch (RPS)

- Mucosal damage and alteration of the gut microbiota increase risk of GI GvHD
- Modify the intestinal microbiome
 - Increase intestinal butyrate (short chain fatty acid)

Resistant Potato Starch (RPS)


- Single-center prospective, single-arm, longitudinal study
 - Bob's Red Mill Starch
 - 20 g daily x 3 days
 - 20 g BID
 - Day -7 to Day 100
 - N=10
 - Stool samples: Day -7, nadir, engraftment, Day 100
 - Increase in intestinal SCFA butyrate levels
 - Well tolerated; No adverse effects

Resistant Potato Starch (RPS)

• Prospective study

- Resistant starch (RS) and oligosaccharide (GFO)
 - GFO with breakfast, RS with lunch and dinner
 - Start of conditioning to Day 28
 - N=49; Control group 72 patients
- Stool samples: Pre-transplant, Day 28.
- Primary outcome: mucositis and diarrhea
 - No change in severity of mucositis or diarrhea
 - Significantly shorter duration of mucositis in study group
 - Shorter duration of diarrhea study
- Secondary: GvHD
 - Day 100 significant reduction all grade aGvHD
 - Late aGvHD incidence high in study group
- Secondary: TPN requirement
 - No change
- Well tolerated; No adverse effects

Recent Failures in Prophylaxis

- Inhibition of cytokines
 - Tocilizumab
 - Etanercept
 - Infliximab
- Defibrotide
- Mesenchymal stem cells

EBMT Recommendations

2024 Update Summary

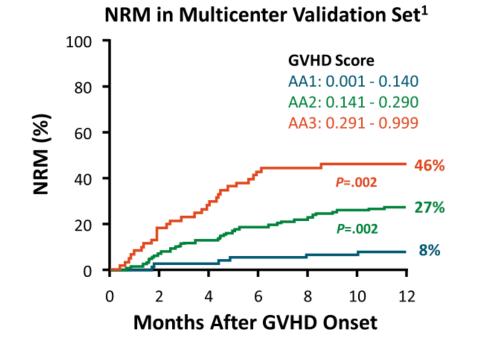
- Rabbit anti-T-cell (thymocyte) globulin or post-transplantation cyclophosphamide as standard GvHD prophylaxis in peripheral blood stem-cell transplantations for unrelated donors
- Methotrexate is the recommended antimetabolite for patients receiving MAC; MMF use only if MTX is contraindicated

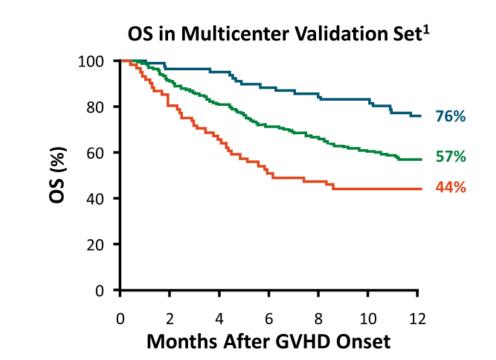
Acute GvHD Initial Therapy

Biomarkers to Predict Outcomes

- MAGIC Algorithm Probability
 - Reg3α & ST2
 - 6-month NRM of 28% in the high-risk group and 7% in the low-risk group
- MAGIC Algorithm Probability
 - Pretreatment and 4 weeks
- Elafin (Skin GvHD)
- Hepatocyte growth factor and cytokeratin 18 (CK18) fragment levels (GI GvHD)

NRM, non-relapse mortality; REG3α, regenerating islet-derived 3; ST2, suppression of tumorigenicity 2


Levine JE, et al. *Lancet Haematol.* 2015:2(1):e21-29. Srinagesh HK, et al. *Blood Adv.* 2019;3(23);4034-4042 Zeiser R, et al. *N Engl J Med.* 2017;377(22):2167-2179.


Risk Stratification

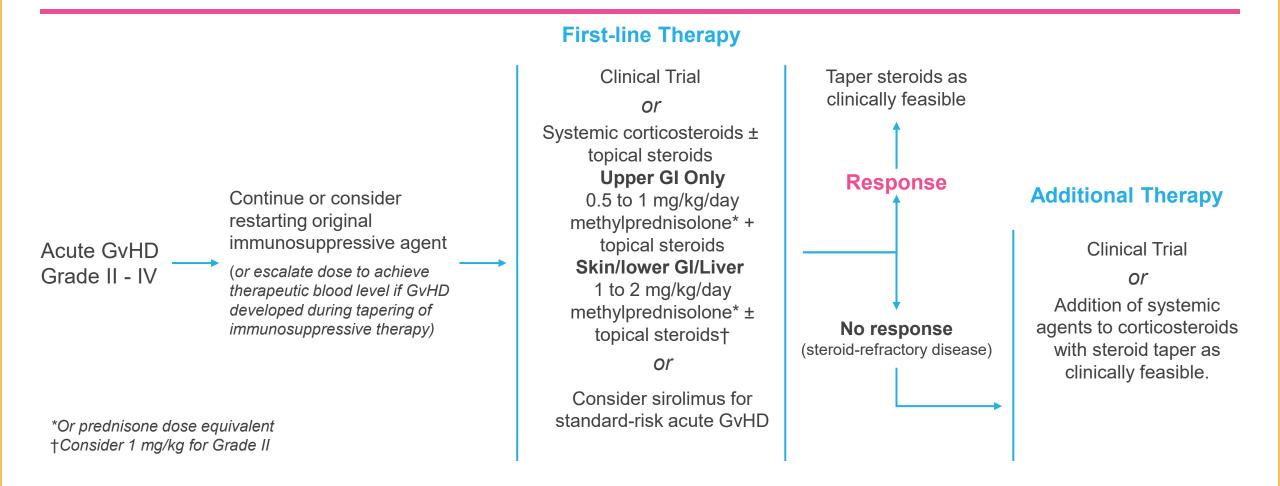
FORUM

The MAGIC algorithm generates a single predicted probability (MAP) of 6-month NRM for each patient

TNFRI + Reg3 + ST2 algorithm¹; Reg3 + ST2 algorithm²

1. Levine JE, et al. *Lancet Haematol.* 2015;2(1):e21-29. 2. Hartwell MJ, et al. *JCI Insight.* 2017;2(3):e89798.

Risk Score



GvHD Risk Score	1 Organ (n) 2 Organs (n)		3 Organs (n)
Standard Risk	Stages 1-3 Skin (901)	Stages 1-3 Skin + Stage 1 GI (223)	
(N=1, 454, 84%)	Stages 1-2 GI (279)	Stages 1-3 Skin + Stages 1-4 Liver (51)	
	Stage 4 Skin (13)	Stages 1-3 Skin + Stage 2 GI (54)	Stages 1-3 Skin + Stages 1-2 GI + Stages 1-3 Liver (23)
High Risk	Stage 3-4 GI (74)	Stages 1-2 Lower GI + Stages 1-3 Liver (12)	
(N=269, 16%)	Stages 1-4 Liver (25)	Stages 3-4 GI + Stages 1-3 Skin (45)	Stages 1-3 Skin + Stages 3-4 GI+ Stages 1-4 Liver (13)
		Stages 3-4 GI + Stages 1-4 Liver (10)	

MacMillan ML, et al. *Biol Blood Marrow Transplant*. 2015;21(4):761-767.

Initial Treatment for aGvHD: NCCN

Loren AW, et al. NCCN Guidelines. Hematopoietic Cell Transplantation. Version 2.2024; 30 August 2024.

Management of Acute GvHD: First-line

Optimize Primary Immunosuppression

Corticosteroids

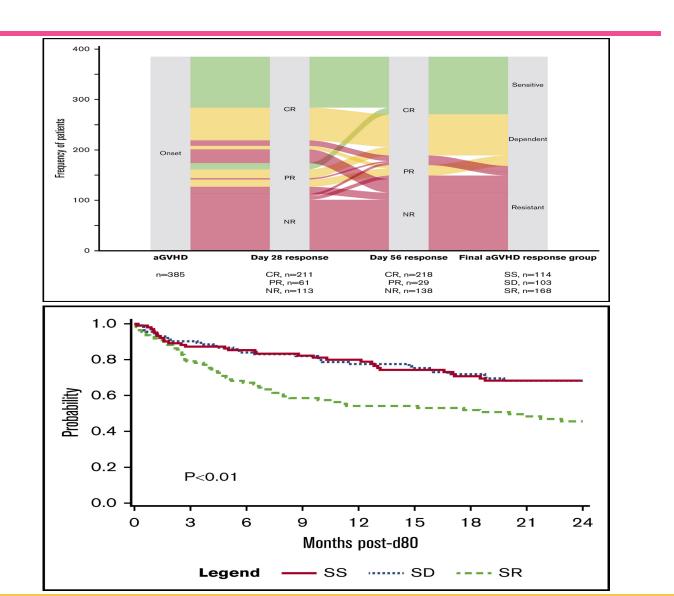
Supportive Care

- Nutritional support
- Infection prophylaxis
- Prevention of secondary complications

Emerging Therapies for aGvHD Prevention, Treatment, and Refractoriness

Gianni B. Scappaticci, PharmD, BCOP

Clinical Pharmacist Specialist Adult/Pediatric BMT and Cellular Therapies University of Michigan Ann Arbor, MI


Steroid Refractory aGvHD

- Corticosteroids remain first-line therapy
 - ORR 40% to 60%
- Steroid refractory aGvHD → dismal prognosis
 – OS 5% to 30%

aGvHD, acute graft-versus-host disease; NRM, non-relapse mortality; ORR, overall response rate; OS, overall survival

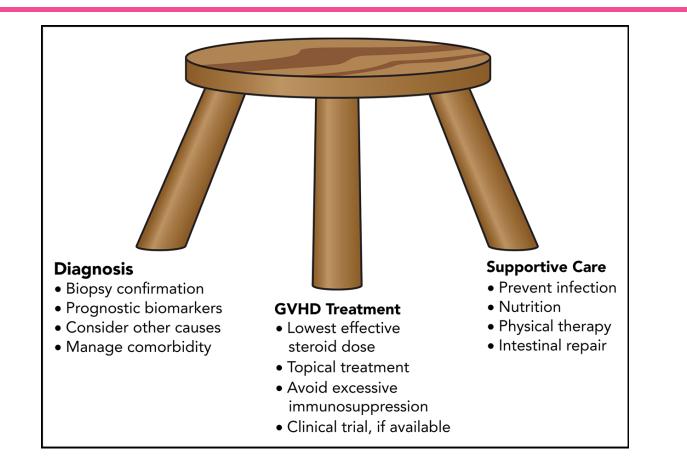
MacMillan ML, et al. *Bone Marrow Transplant* 2020;55(1):165-171. Zeiser R, et al. *N Engl J Med.* 2017;377(22):2167-2179. El Jurdi N, et al. *Blood Adv.* 2021;5(5):1352-1359.

Management of SR aGvHD (NCCN)

SR aGvHD

Progression of aGvHD within 3 to 5 days of therapy onset with ≥ 2 mg/kg/day of prednisone

Failure to improve within 5 to 7 days


Incomplete response after more than 28 days of immunosuppressive treatment, including steroids

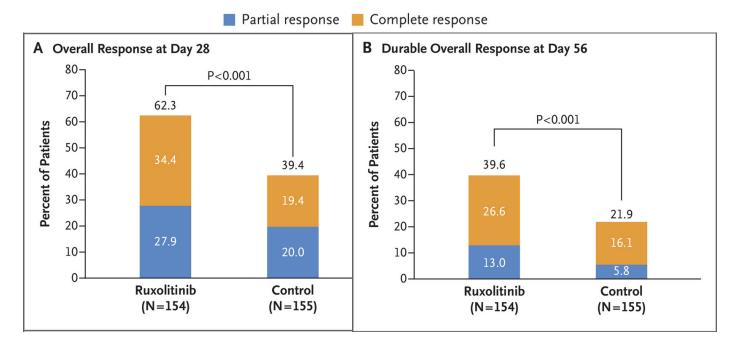
	SR aGvHD Treatment Options				
	Ruxolitinib (category 1)	Extracorporeal photopheresis (ECP)			
	Alemtuzumab	Infliximab			
	Alpha-1 Antitrypsin	mTOR (sirolimus)			
	ATG	Mycophenolate mofetil			
	Basiliximab	Pentostatin			
	CNI (tacrolimus/cyclosporine)	Tocilizumab			
	Etanercept	Vedolizumab			
	Clinical Trial				

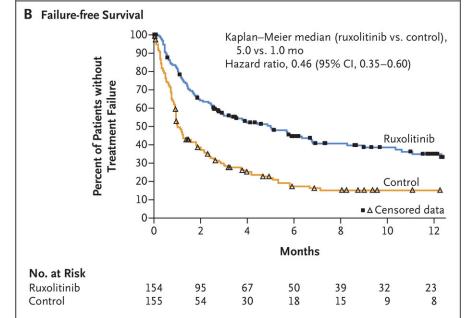
aGvHD, acute graft-versus-host disease; SR aGvHD, steroid refractory acute graft-versus-host disease; ATG, anti-thymocyte globulin; CNI. calcineurin inhibitor

SR-aGvHD Considerations

GvHD, graft-versus-host disease; SR aGvHD, steroid refractory acute graft-versus-host disease

- REACH1: Multicenter, open-label, single-arm Phase 2 trial
 - − ≥12 years old; Grade 2-4 SR-aGvHD
 - Ruxolitinib: 5 mg BID
 - N=71 patients


Response at Day 28 by grade of aGvHD						
Response	Grade 2 (N=23)	Grade 3 (N=34)	Grade 4 (N=14)	All Patients (N=71)		
ORR	19 (82.6)	14 (41.2)	6 (42.9)	39 (54.9)		
CR	11 (47.8)	7 (20.6)	1 (7.1)	19 (26.8)		
VGPR	4 (17.4)	2 (5.9)	1 (7.1)	7 (9.9)		
PR	4 (17.4)	5 (14.7)	4 (28.6)	13 (18.3)		


Zeiser R, et al. *N Engl J Med*. 2020;382(19):1800-1810.

BAT, best available therapy

REACH2

- REACH2: Phase 3: Multicenter, open-label, randomized trial
 - − ≥12 years old; Grade 2-4 SR-aGvHD
 - Ruxolitinib: 10 mg BID (N=154) versus BAT (N=155)

Ruxolitinib Refractory aGvHD?

• 45%/38% of patients = no response in REACH1/2

Ruxolitinib Refractory aGvHD Definition

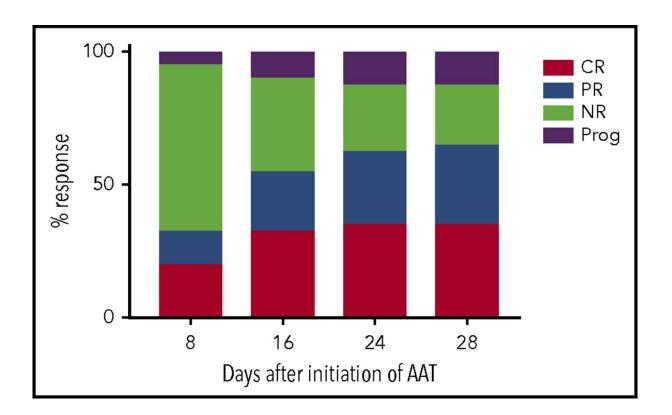
Progression of GvHD compared with baseline after ≥ 5 to 10 days of treatment (objective increase in stage/grade or new organ involvement)

Lack of improvement in GvHD (PR or better) after at least 14 days of treatment

Loss of response: Objective worsening of GvHD defined by increase in stage, grade, or new organ involvement at any time after initial improvement

Alpha-1 Antitrypsin for SR-aGvHD

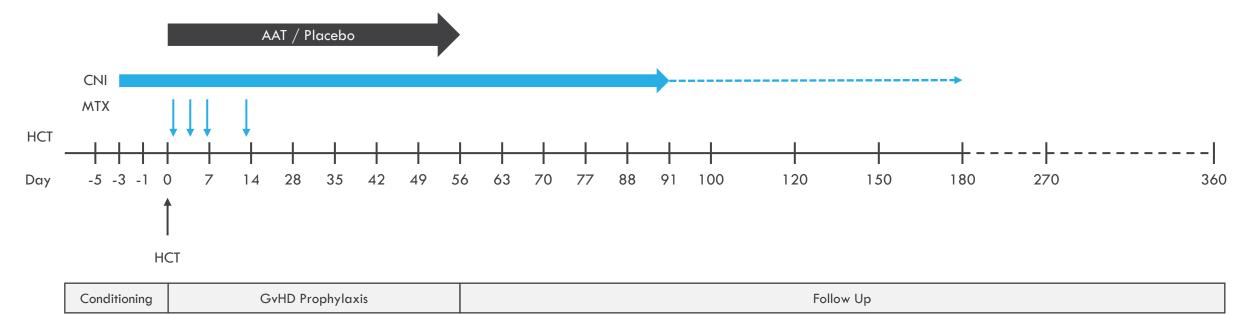
- AAT = 52-kDa circulating protease inhibitor
- Mechanism of action:
 - —
 —
 inflammatory cytokines
 - T_{effector}: T_{reg} ratios
 - J DAMPs
 - Inhibits TLR activation and NF-kB in DCs
- Administered IV 60 mg/kg/dose twice weekly x 8 doses


AAT, alpha-1 antitrypsin; DAMPS, damage-associated molecular patterns; DCs, dendritic cells; TLR, toll-like receptors

Magenau JM, et al. Blood. 2018;131(12):1372-1379.

Alpha-1 Antitrypsin for SR-aGvHD

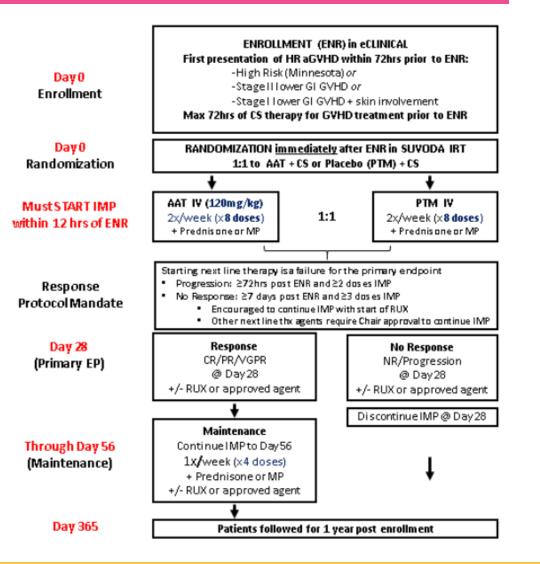
- Day 28 ORR = 26/40 patients (65%)
 - CR = 14 patients (35%)
 - PR = 12 patients (30%)
- Day 60 ORR = 19/40 patients (47.5%)
 - CR = 14 patients (35%)
 - PR = 19 of 26 initial responders (73%)



ORR, overall response rate; CR, complete response; PR, partial response; NR, no response; Prog, progression

AAT – aGvHD Prophylaxis

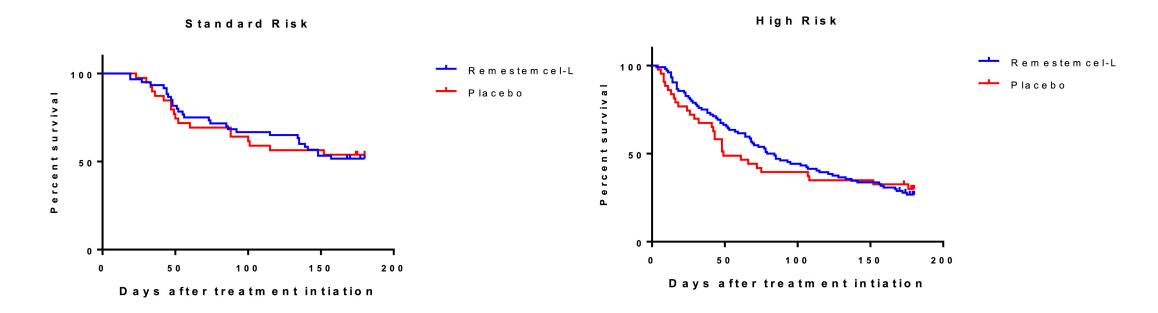
 A Phase 2/3, <u>Multicenter</u>, rand<u>O</u>mized, <u>D</u>ouble-blind, placebo-controlled, st<u>U</u>dy to eva<u>L</u>uate the safety and efficacy of <u>A</u>lpha-1 <u>A</u>nti<u>T</u>rypsin for the pr<u>E</u>vention of graft-versus-host-disease in patients receiving hematopoietic cell transplant (MODULAATE Study)


MTX, methotrexate; HCT, hematopoietic stem cell transplant

MODULAATE Study – NCT03805789

AAT for aGvHD (BMT CTN 1705)

- Phase 3, double-blind, placebo controlled
- AAT 120 mg/kg 2x/week + corticosteroids (max 72 hours)
- Primary objective: Compare CR/PR rates at day 28
- Active, not recruiting


Mesenchymal Stromal Cells for SR-aGvHD

- Mesenchymal stromal cells (MSCs) multipotent, heterogenous, and nonhematopoietic cell population
 - Secrete cytokines and regulatory molecules
 - Promote anti-inflammatory and regenerative effects
 - Repair/replace damages tissue
- Variable success rates for SR-aGvHD
- Well tolerated

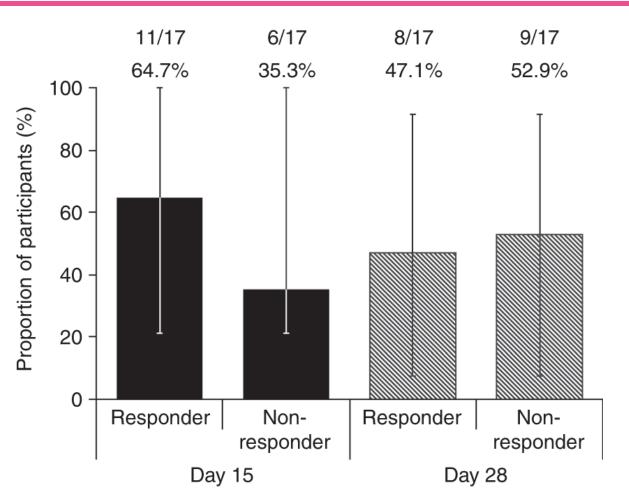
Mesenchymal Stromal Cells for SR-aGvHD

All patients, Day 28 ORR: MSCs 58% vs 54%; P=.59 High-risk GvHD, Day 28 ORR: MSCs 58% vs 37%; P=.03 Age <18, Day 28 ORR: MSCs 64% vs 23%; P<0.05 Any liver involvement, Day 28 ORR: MSCs 55% vs 26%; P<0.05

Kebriaei P, et al. Biol Blood Marrow Transplant. 2020;26(5):835-844.

Vedolizumab for SR-aGvHD

- Targets $\alpha 4\beta 7$ integrin expressed on lymphocytes
- Inhibits interaction between $\alpha 4\beta 7$ integrin and MAdCAM-1
- Prevents migration of T cells to GI mucosa
- Variable success for SR-aGvHD
- Dosing varies, 300 to 600 mg Q1-2 weeks

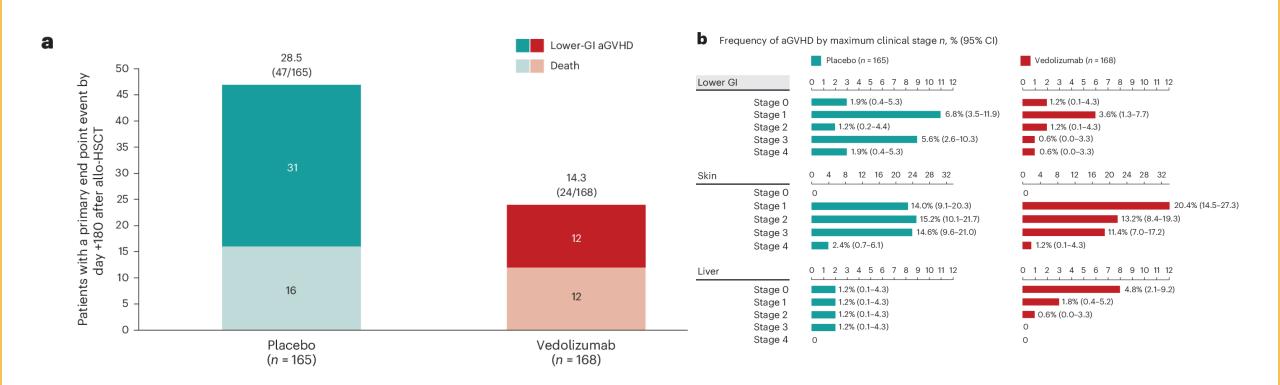

GI, gastrointestinal; MAdCAM-1, mucosal addressin cell-adhesion molecule-1

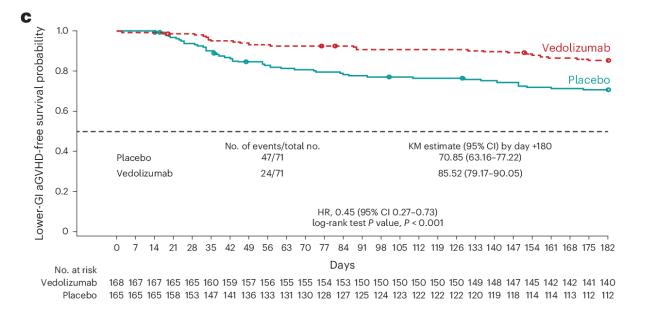
Fløisand Y, et al. *Bone Marrow Transplant.* 2021;56(10):2477-2488. Mehta RS, et al. *Transplant Cell Ther.* 2021;27(3):272.

Vedolizumab for SR-aGvHD

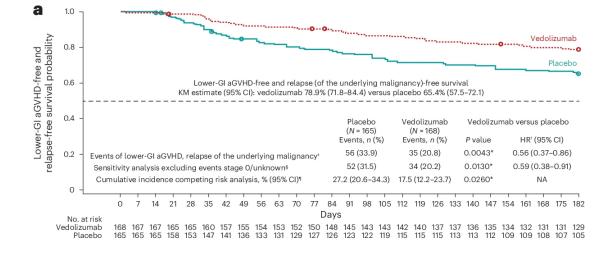
- Day 28: 35.3% had OR in all organs involved
 - OR in aGvHD in 64.7% (n=11) at
 Day 15 and 47.1% (n=8) at Day 28
- CR = 11.8% (n=2) in all organs at Day 15
 - CR = 5.8% (n=1) at Day 28
 - CR = 23.5% (n=4) at Day 43

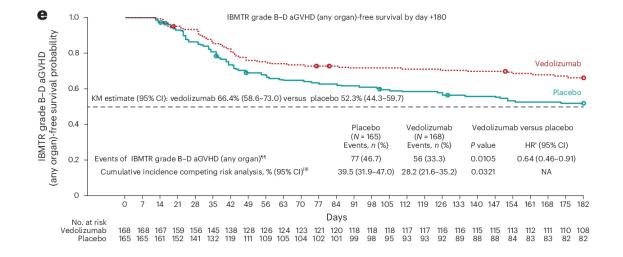
Note: Study stopped accruing early due to premature discontinuation of study drug and observed mortality




- Phase 3, randomized, placebo controlled
- Vedolizumab 300 mg IV on D-1, +13, +41, +69, +97, +125, +153
- Added to CNI + MTX or MMF
 - ATG permitted (capped at 25% of total enrollment)
- Age \geq 12, weight \geq 30 kg, 8/8 or 7/8 HLA-matched unrelated PB or BM

Chen Y, et al. Nat Med. 2024;30(8):2277-2287.



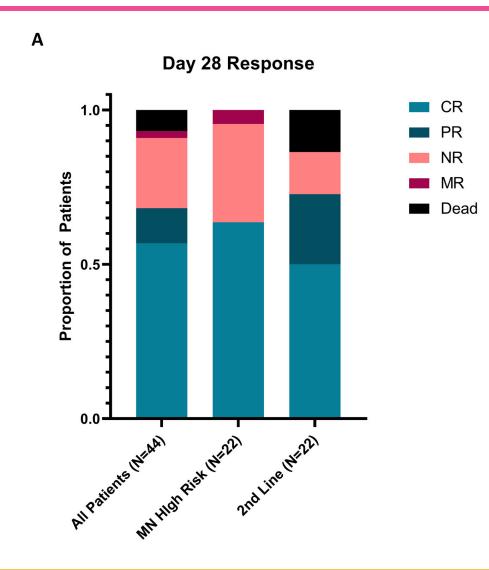


d Primary end point subgroup analyses		Placebo, n/N (%)	Vedolizumab, n/N (%)		Vedolizumab versus placebo HR (95% CI)
Conditioning	MAC	23/89 (25.8)	15/88 (17.0)		0.62 (0.33–1.20)
	RIC	24/76 (31.6)	9/80 (11.3)	₩	0.29 (0.14-0.63)
Prophylaxis	With ATG	19/66 (28.8)	9/71 (12.7)	⊢ ● —┥┆	0.38 (0.17–0.85)
	Without ATG	28/99 (28.3)	15/97 (15.5)	⊢● – I	0.49 (0.26-0.92)
CNI	TAC	24/88 (27.3)	11/80 (13.8)	HeI	0.41 (0.19-0.86)
	CYS	17/65 (26.2)	13/82 (15.9)	⊢ ⊕́I	0.55 (0.26-1.15)
HLA match	8/8	38/146 (26.0)	19/146 (13.0)	H e -4	0.46 (0.26-0.80)
	7/8	9/19 (47.4)	5/22 (22.7)	⊢ ●	0.40 (0.13–1.20)
Stem cell source	Bone marrow	5/22 (22.7)	5/27 (18.5)	⊢ ● <u> </u>	0.65 (0.15–2.79)
	Peripheral blood	42/142 (29.6)	19/141 (13.5)	⊷	0.41 (0.24–0.70)
				0 1 2 HR (95% C	2 3

Chen Y, et al. *Nat Med.* 2024;30(8):2277-2287.

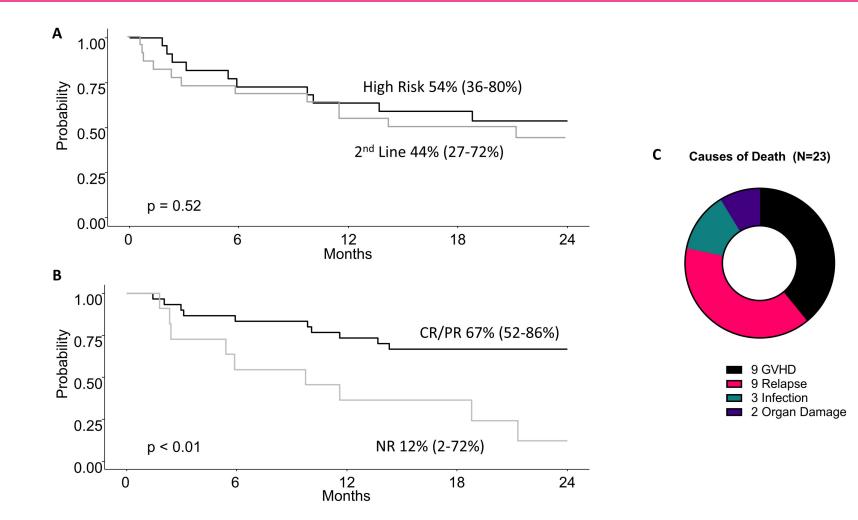
Chen Y, et al. Nat Med. 2024;30(8):2277-2287.

Beta-hCG for SR-aGvHD



- Impaired healing of damaged tissues = poor aGvHD outcomes
- Human chorionic gonadotropin (hCG) = epidermal growth factor
- Promote resolution of tissue damage in aGvHD
- Promotes T_{reg} expansion
- 2000 to 5000 units/m² of uhCG/EGF SQ every other day

Beta-hCG for SR-aGvHD (NCT02525029)


FORUM[®]

- Day 28 ORR = 68%
 (57% CR; 11% PR)
- MN high-risk ORR = 64% (all CRs)
 - N=22
- 2nd line therapy ORR = 73% (50% CR; 23% PR)
 - N=22

Beta-hCG for SR-aGvHD (NCT02525029)

Holtan S, et al. *Transplant Cell Ther*. 2023;29(8):509.

Lithium for Acute GI-GvHD

- Immunosuppression targets systemic GvHD
 - Fails to resolve mucosal injury of gut
- Lithium promotes intestinal epithelial repair
 - Inhibits GSK3
 - Promotes β -cantenin-mediated transcription
 - Activates Wnt pathway

- Epithelial stem cell replication
- Crypt genesis/proliferation

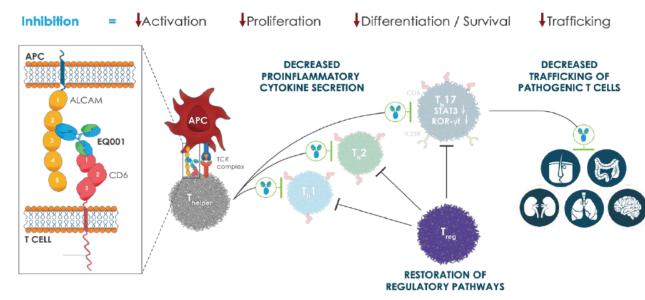
GI-GvHD, gastrointestinal graft-versus-host disease; GSK3, glycogen synthase kinase-3

Martin PJ. *Blood.* 2020;135(19):1630-1638. Steinback G, et al. *PLoS One.* 2017;12(8):e0183284.

Lithium for Acute GI-GvHD

- Lithium carbonate ER 450 mg
 - Target trough 0.5 1.0 mmol/L
- All patients had severe GI-GvHD
- 10/20 = CR; 8 survived >1 year
- Early lithium (<3 days) improved response

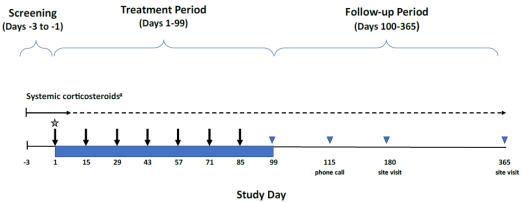
Characteristic	Survivors (N = 8)	Nonsurvivors (N = 12)
lithium started \leq 3 days after endoscopic diagnosis of denuded mucosa, N (%)	8 (100)	4 (33)
Salvage therapy for refractory GVHD \geq 7 days before lithium, N (%)	0 (0)	7 (58)
lithium started \leq 3 days after endoscopy and no salvage therapy for GVHD \geq 7 days before lithium, N (%)	8 (100)	2 (17)
lithium started \leq 3 days after endoscopy and given for \geq 19 days, N (%)	8 (100)	1 (8)


https://doi.org/10.1371/journal.pone.0183284.t004

Itolizumab aGvHD Treatment (EQ-100-02)

- Itolizumab targets CD6 on T cells
 - Costimulatory membrane glycoprotein
 - Blocks binding of CD6 to ALCAM
- Age ≥12, weight ≥40 kg, Grade III-IV aGvHD or Grade II LGI

Figure 1: Blockade of CD6 Co-stimulation by Itolizumab Inhibits Optimal T-Cell Activation and Attenuates a Proinflammatory Response


ALCAM, activated leukocyte cell adhesion molecule

Protocol Number: EQ-100-02, Version 6 Equillium, Inc. Phase 3 Study of Itolizumab as initial therapy for aGvHD.

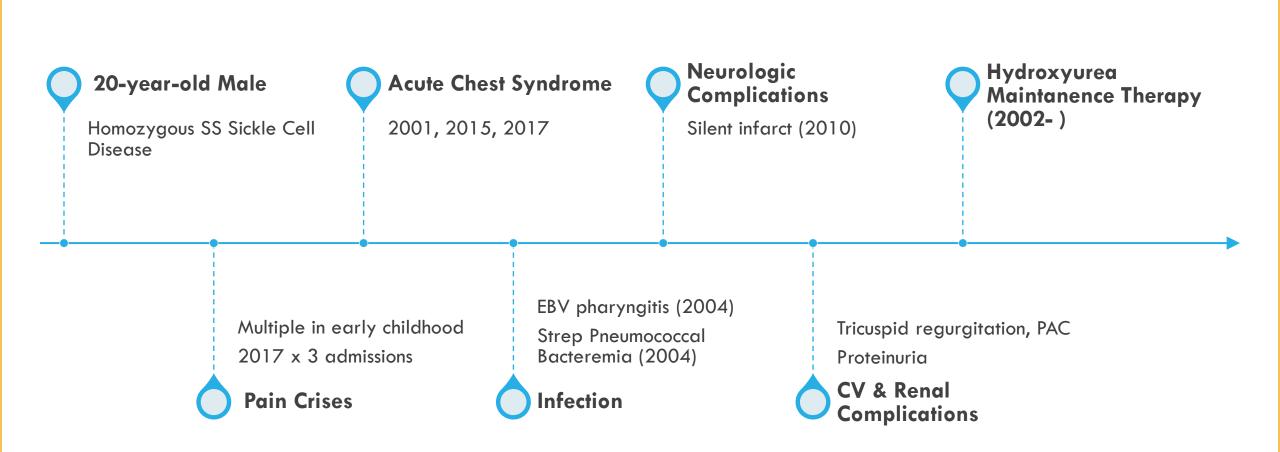
Itolizumab aGvHD Treatment (EQ-100-02)

- Primary objective:
 Efficacy of itolizumab versus placebo in combination with steroids
- Itolizumab 1.6 mg/kg IV load,
 0.8 mg/kg/dose every 2 weeks

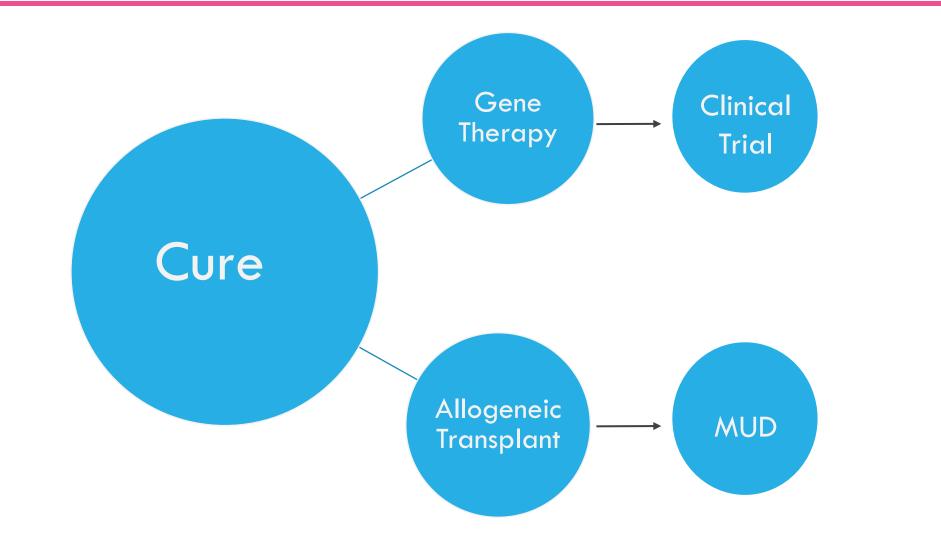
🛧 Randomization

Study drug administration

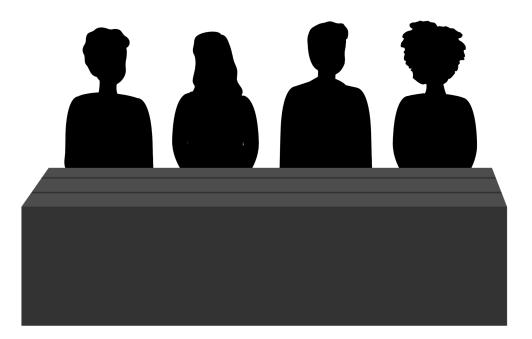
^a Subjects must have started treatment with systemic corticosteroids ≤72 hours prior to study drug dosing. The dose on Day 1 must be 2 mg/kg/day of methylprednisolone or equivalent. Steroid tapering may be initiated starting on Day 3.



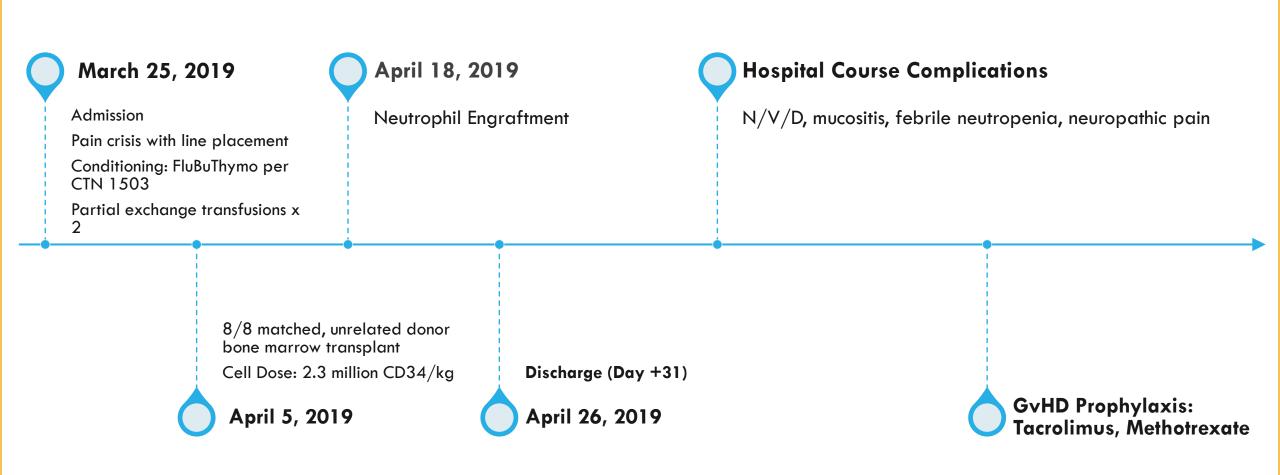
Interprofessional Care Panel Discussion


Meet Paul

Treatment Options

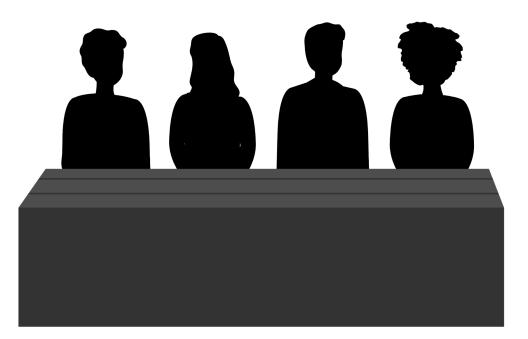


Discussion

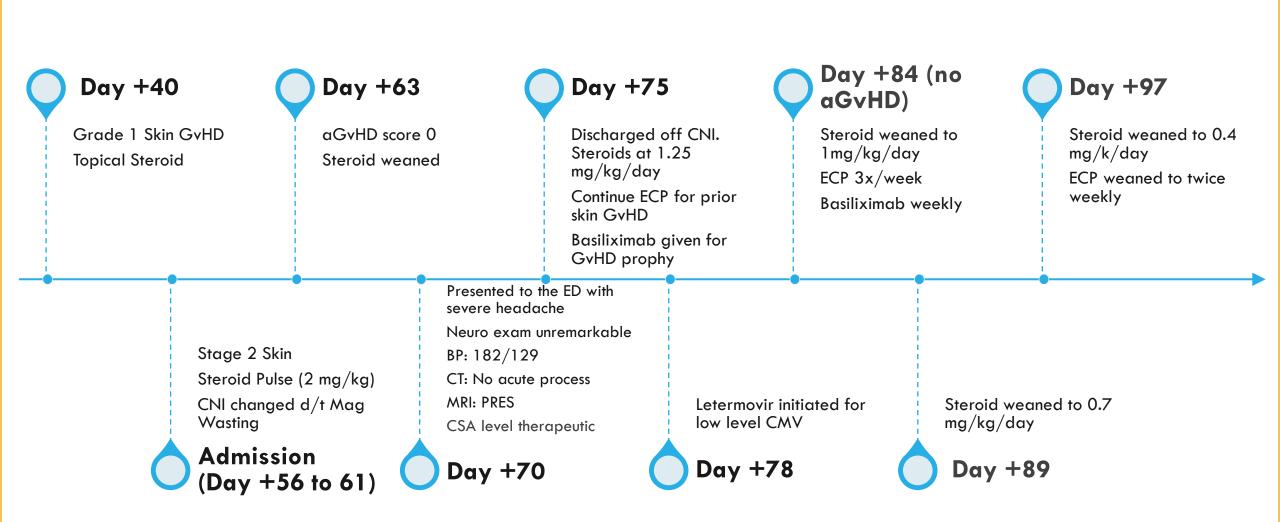


- How did you make the decision of BMT versus gene therapy?
- What kind of pre-BMT education do you recall?
- Which transplant related complications do you recall hearing about in your pretransplant consultation?

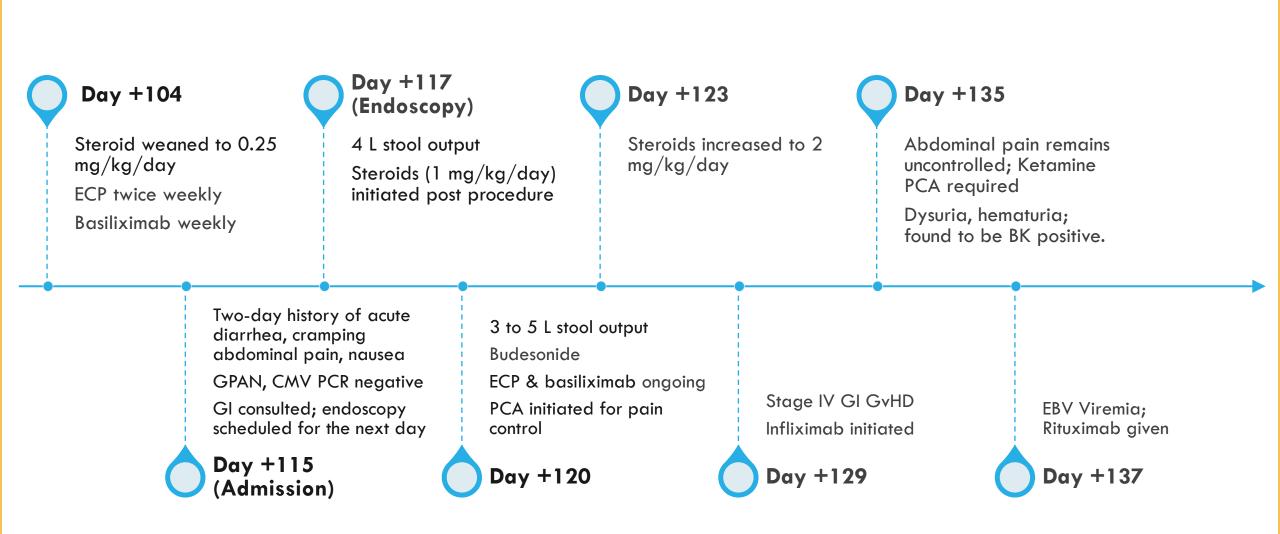
Initial Hospital Course

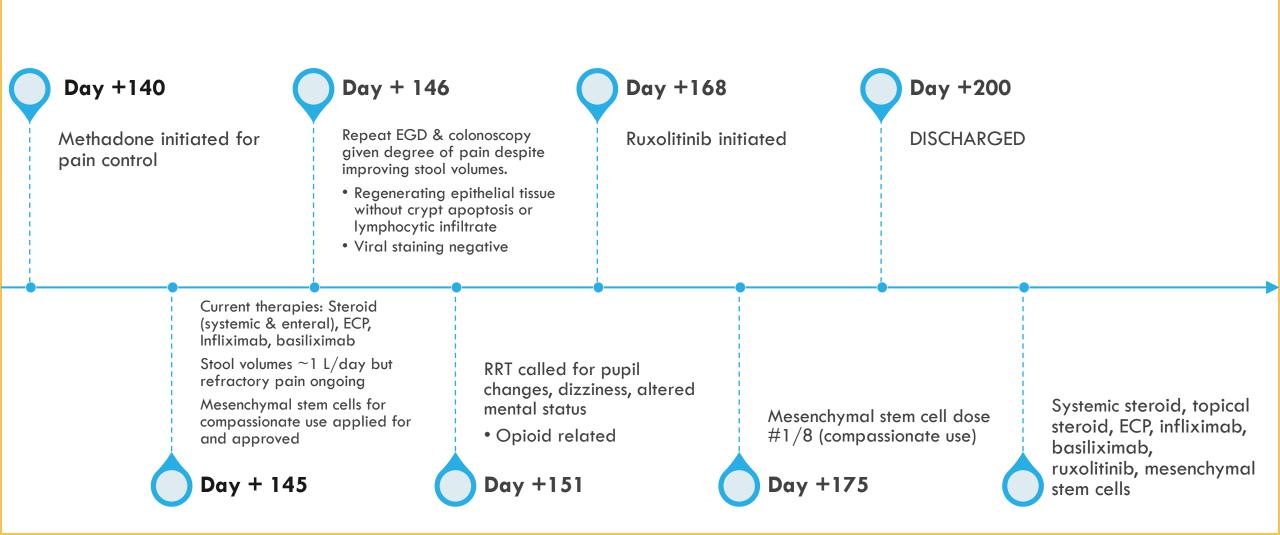


Discussion

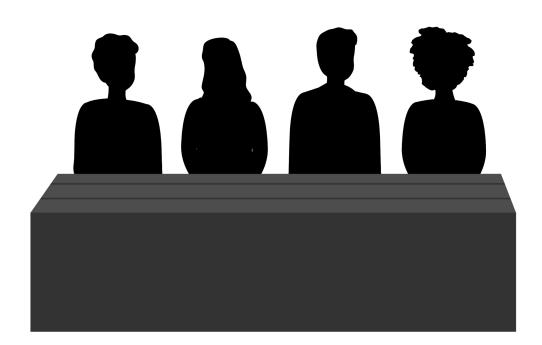


- Was there anything significant that you recall about your initial hospitalization?
- Can you describe your family and support system?
- What role did the team members play in your care?


Post-Transplant Course

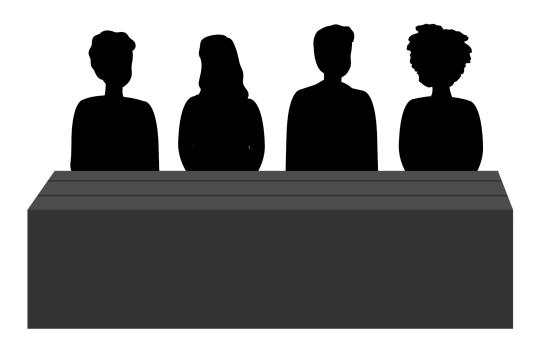

Post-Transplant Course

Post-Transplant Course



Discussion

- As an African-American patient, did you hear the team talk about how your skin GvHD may have been easier or harder to identify and treat? If so, please describe your experience as a patient?
- Please describe your fears as you were experiencing steroid refractory GvHD?
- What do you think got you through?
- What were some of the barriers or limitations to your care? Insurance?



Paul 2024

Discussion

- Paul, can you share how your experience has influenced the care you provide for BMT patients, as a floor nurse on the same Pediatric BMT Unit that you received your transplant?
- Can you describe what your survivorship/long-term follow-up care currently looks like?
- If you could do this again, would you have chosen BMT versus gene therapy?

Long-term Follow-up

- 5 years post-transplant
- Hemoglobin S: 0%
- Chimerism: 100% donor CD3+ and CD33+
- No evidence of active cGvHD
- Organ function
 - Nephrology: Proteinuria; followed by nephrology
 - Cardiac: Normal ECHO
 - Pulmonary: Restrictive pattern on PFTs
 - Osteopenia noted in femoral neck
 - Endocrine function normal